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Executive Summary 

The Systems Engineering Research Center (SERC) has developed a novel cyber security concept for 
embedding security solutions into systems called System-Aware cyber security. The goal of the System-
Aware program is to develop low cost methods of protection against cyber exploits by our adversaries.  
Working through the SERC, the University of Virginia (UVa) and the Georgia Tech Research Institute 
(GTRI) have advanced the System-Aware cyber security concept and evaluated a number of specific 
design patterns that are intended to be reusable across a variety of applications. These patterns include, 
but are not limited to, employing diverse redundant components in critical subsystems, using voting 
techniques across diverse redundant components for real-time discovery and elimination of infected 
components, dynamically modifying the configuration of software components in systems through 
virtual configuration hopping techniques, dynamically modifying the configuration of the 
hardware/software components in systems through physical configuration hopping techniques, using 
system specific data consistency-checking to determine if critical system information has been 
manipulated, and where applicable, use of analog components as trusted elements to perform critical 
security functions in systems. Furthermore, a decision support framework has been developed for use 
by systems engineering teams in selecting a subset of available design patterns for integration into a 
cyber-security system architecture.  

To demonstrate the effectiveness of the System-Aware design patterns, specific ones were developed 
for an unmanned aerial vehicle (UAV) application.  The application to UAV-based systems was inspired 
by the wide variety of subsystems that are used in UAV configurations, the range of potential cyber-
attacks that can seriously impact the critical missions of these systems, and the significant power, space 
and performance constraints that System-Aware designs must address in order to operate in UAV-based 
configurations.  

During the Phase I effort the UVa/GTRI team achieved a number of accomplishments including: 

 Creation of software and hardware in the loop simulators and emulators to enable the
testing of System-Aware cyber security solutions.

 Identification, selection, and design of potential cyber-attacks that could be utilized to
compromise the UAV’s ability to carry out its mission.

 Design of a prototype smart security Sentinel to host System-Aware cyber security solutions
to protect against the cyber-attacks.

 Design of a Sentinel for airborne use based on the SiCore SHIELD secure single board
computer.

The Phase II effort for conducting a flight demonstration of the System-Aware Sentinel has been 
planned.  Phase II will consist of the activities necessary to integrate the results of the Phase I effort into 
the GTRI Aerial Unmanned Sensor System (GAUSS) aircraft in order to create a flight-ready 
demonstration. The GAUSS platform is a small research UAV with a widely used, commercial off-the-
shelf autopilot system and camera gimbal.  The demonstration will show how the System-Aware 
approach can be used to thwart cyber-attacks against autopilot systems and sensor systems. 
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1 Project Status Overview 

The Systems Engineering Research Center (SERC) has been engaged with the Department of Defense 
(DoD) in developing a novel cyber security concept for embedding security solutions into systems; this 
new concept is referred to as System-Aware Cyber Security. These solutions provide greater assurance 
to the most critical system functions by providing an additional layer of defense that complements 
perimeter and network security solutions that serve to guard the entire system from penetration. 
System-Aware solutions are particularly effective at guarding against insider and supply chain attacks 
that circumvent perimeter security solutions. The broad objective of the System-Aware program can be 
thought of as reversing cyber security asymmetry from favoring our adversaries, to favoring the US; i.e., 
from favoring a small investment in straightforward cyber exploits to favoring small investments in 
System-Aware cyber security solutions for protecting critical system functions.  

To-date, the SERC and a University of Virginia (UVa) led team, consisting of the UVa and the Georgia 
Tech Research Institute (GTRI), have advanced the System-Aware cyber security concept and evaluated 
a number of specific design patterns that are intended to be reusable across a variety of applications. 
These patterns include, but are not limited to, employing diverse redundant components in critical 
subsystems, using voting techniques across diverse redundant components for real-time discovery and 
elimination of infected components, dynamically modifying the configuration of software components 
in systems through virtual configuration hopping techniques, dynamically modifying the configuration of 
the hardware/software components in systems through physical configuration hopping techniques, 
using system specific data consistency-checking to determine if critical system information has been 
manipulated, and where applicable, use of analog components as trusted elements to perform critical 
security functions in systems. Furthermore, a decision support framework has been developed for use 
by systems engineering teams in selecting a subset of available design patterns for integration into a 
cyber-security system architecture.  

In addition, a Phase 0 effort consisting of an evaluation of possible applications of existing RT-28-
developed design patterns to a specific application has been completed. The results of this effort 
identified an unmanned air vehicle (UAV) system configured for conducting surveillance missions as 
suitable for a follow on Phase 1 prototyping pilot effort for validating the System-Aware cyber security 
concept. The application to UAV-based systems was inspired by the wide variety of subsystems that are 
used in UAV configurations, the range of potential cyber-attacks that can seriously impact the critical 
missions of these systems, and the significant power, space and performance constraints that System-
Aware designs must address in order to operate in UAV-based configurations.  

This document outlines the results of the Phase 1 effort to apply System-Aware cyber security solutions 
to an UAV system: 

1. Creation of both a simulated and an emulated environment to enable the testing of System-
Aware cyber security solutions. 

2. Identification, selection, and design of potential cyber-attacks that could be utilized to 
compromise the UAV’s ability to carry out its mission. 

3. Design of a prototype smart security Sentinel to host System-Aware cyber security solutions to 
protect against the cyber-attacks identified in (2). 
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4. Design for a Sentinel configured to meet the size, weight, power and functional requirements 
necessary for airborne use.  
 

This document also outlines the proposed work for a follow-on Phase 2 project that would consist of 
activities necessary to integrate the results of the Phase 0 and 1 efforts into the GTRI Aerial Unmanned 
Sensor System (GAUSS) aircraft in order to create a flight-ready demonstration.  

2 Project Emulation and Simulation Environments 

The platform selected for demonstrating methodologies to protect unmanned autonomous systems 
(UASs) from cyber-attacks is the GTRI GAUSS aircraft.  This UAV uses the Piccolo II unmanned aerial 
avionics system (hereafter referred to as Piccolo or Piccolo II) and a TASE 150 camera gimbal system, 
both supplied by Cloud Cap Technology™, a United Technology Corporation™ company.  Prior to flight-
testing any new technology with this aircraft, extensive testing is conducted using ground-based 
simulators and emulators to ensure flight safety.  The Piccolo II autopilot system supports both a 
software-in-the loop (SiL) simulation capability and a hardware-in-the-loop (HiL) emulation capability.  
Both the UVa and the GTRI have versions of the SiL and HiL environments for supporting on-site 
development and testing at their respective locations. The GTRI emulator also includes the capability to 
integrate the TASE camera gimbal into HiL emulation environment.  The following subsections describe 
the SiL and HiL development and test environment at each location.  

2.1 UVa Piccolo II HiL Emulation Environment 

The UVa utilizes the out-of-the-box simulation and emulation capabilities provided by Cloud Cap 
Technology with their Piccolo II autopilot.  The HiL emulation environment uses a simulator to represent 
the state of the aircraft (e.g., the power levels, aileron settings, and fuel), as well as to generate GPS 
data to simulate the aircraft flying over any location. The actual control of the aircraft is done by using 
the Piccolo II, operator interface for piloting the Piccolo II, and the supporting ground transmitters and 
receivers. As seen in Figure 1, the operator interface, Piccolo Command Center (PCC), connects directly 
to a ground station. This ground station is used to send and receive commands and status information 
from the Piccolo II. For the HiL emulation environment, the Piccolo II is connected to a PC that hosts a 
simulator of the aircraft as well as of the GPS satellites.  This computer can be the same one that is 
hosting the PCC or a separate computer, as depicted in Figure 1.  
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Figure 1. Basic HiL configuration for the Piccolo II. 

In both the UVa and the GTRI HiL emulation environments, the waypoints for the flight path are sent 
from the operator’s interface (PCC) to the Piccolo II via a radio link between the ground station and the 
Piccolo II; this is the same link that is used in an actual flight.  A six degree of freedom (6 DoF) flight 
dynamics model of the aircraft running on the aircraft simulator computer provides the aircraft’s state 
to the Piccolo II via a CAN bus (controller area network).  The Piccolo II calculates the aircraft’s actuator 
commands and sends them to the 6 DoF simulation via the same CAN bus. In the GTRI HiL, the aircraft’s 
pose (position and attitude) are also sent to the gimbal via the CAN bus to simulate the output of its 
own integrated GPS and inertial measurement unit.   

The UVa team has leveraged this emulation capability as it has designed the system attacks, the Sentinel 
monitoring and detections capabilities, and any restorative actions using this environment.  The details 
of how the HiL emulation environment was augmented to include the Sentinel’s monitoring, detection, 
and restoration techniques is described in Section 3.1. 

2.2 GTRI HiL Emulation Environment 

The GTRI team utilized a Piccolo HiL emulation/simulation environment that is identical to the UVa 
environment with the addition of the TASE 200 gimbal system from Cloud Cap Technology and its 
associated hardware and software. As seen in Figure 2, the GTRI’s HiL emulator consists of a Piccolo II 
autopilot, TASE 200 gimbal, Cloud Cap video processing system (VPS), and ground station.  The TASE 200 
is similar to the TASE 150 installed on GTRI’s aircraft, but includes an IR camera. 
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Figure 2. The GTRI HiL emulation environment. 

Figure 3 shows the data communications between the various avionics systems for the HiL environment 
shown in Figure 2.  The aircraft pose data is used by the gimbal system to automatically steer the gimbal 
when it is locked on a point of interest (POI).  The gimbal outputs metadata to the VPS which overlays 
gimbal status information on the video via a serial line using the RS-232 standard; e.g., the current pan, 
tilt, and zoom of the camera.  The camera also sends NTSC analog video to the VPS which performs 
image stabilization before sending the video to the video display via a radio link.  In the HiL emulation 
environment, the analog video from the camera is replaced with synthetic video from a scene generator, 
MetaVR.  MetaVR, depicted in Figure 4, is an additional HiL capability that allows for the visualization of 
camera imagery of an aircraft in flight. MetaVR, a virtual reality scene generator, decodes the state 
information of the aircraft via a network interface with ViewPoint, the program used to view the video.  
The software generates a scene based on the aircraft GPS information and gimbal angles. Any scene 
within the Southeast United States or Afghanistan can currently be generated, allowing a variety of 
CONOPS to be visualized. The analog video is converted to a digital format (H.264) and displayed at the 
video display using the ViewPoint software. 

Figure 3 also shows the location of data monitoring points on the serial connections that may be used to 
detect the injection of a cyber-attack.  To conduct this monitoring GTRI developed a snooping device 
based on the Raspberry Pi single compute board (SBC) (see section 3.3.1.2).  These snoopers can 
intercept the serial data, decode the information, and retransmit the data. The Raspberry Pi contains 
two serial ports that allow receiving, altering, and retransmitting of serial data. These monitor points will 
provide sites where the attack can be injected during the actual flight tests. 
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Figure 3.  Data flow diagram for the GTRI HiL emulation environment. 

 
Figure 4. ViewPoint user interface for streaming video created by the MetaVR scene generator  



Report No. SERC-2014-TR-036-3                                                                                                                             13 
 

In preparation for an eventual flight test GTRI improved the 6DOF modeling parameters to better 
represent the GAUSS UAV.  This activity included building a higher fidelity inertial model by 
disassembling the major components of the air vehicle and weighing them.  The component weight data 
was then input to the inertial model spreadsheet provided by Cloud Cap to calculate the aircraft’s mass 
properties (e.g. location and moments of inertia).  To improve the aerodynamic modeling the 
aerodynamic and flight dynamic analysis code AVL from MIT was used to generate the linearized 
aerodynamic model parameters for the nominal flight state.  AVL employs an extended vortex lattice 
model for the lifting surfaces, together with a slender-body model for fuselages and nacelles. The CAD 
model of the GAUSS airframe provided by Griffon Aerospace (the manufacturer of the GAUSS airframe) 
was used for the AVL analysis.  The aerodynamic parameters from AVL were input to the Piccolo 6 DOF 
simulation and the aircraft’s dynamic responses to manual control inputs were evaluated by pilots 
familiar with the handling qualities of the GAUSS aircraft.  Several of the lateral and directional stability 
derivatives were adjusted to make the simulation model match the behavior observed during previous 
flight tests.  To improve the performance modeling, the engine look-up table was updated with results 
from dynamometer testing of the DA-150 engine used on GAUSS.  In addition, the propeller 
performance model was updated based on performance calculations for the Xoar 28x14 propeller.  The 
propeller performance data was provided by an earlier blade element analysis using the Comprehensive 
Analytical Model of Rotorcraft Aerodynamics and Dynamics from Johnson Aerospace (CAMRAD/JA).  
Additional improvements to the simulation model include rebuilding the .xml model file, developing a 
visualization model of the GAUSS, and updating the simulator autopilot software to v2.2.1.c. 

3 Review of Phase I Activities 

3.1 Relational System-Aware Cyber Assessment Methodology 

The relational System-Aware cyber assessment methodology is a process that has been developed as 
part of this project to identify the critical system components for a particular system, identify the 
possible attack paths to attack those components, determine which of those attack paths would be 
most desirable an adversary, identify possible cyber security defenses against those attacks as well as  
evaluate the impacts of those defenses on the attacker, assess the effects on system performance of 
potential defenses , and to estimate the security trade-offs of the various architectural solutions. The 
relational System-Aware assessment methodology is composed of six steps; each step having a well-
defined goal, required deliverables, and responsible team(s) for that stage.  

This section outlines the relation System-Aware methodology at a high level in order to capture the 
general flow from one step to another. For more detailed information, refer to Barbara Luckett’s 2013 
thesis. 

3.1.1 Definitions 

The relational System-Aware cyber assessment methodology described here was designed to be an 
iterative process that relies on inputs from a range of stakeholder communities. In order to ensure that 
the information being used is as accurate and certain as possible, it was imperative to ask individuals 
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questions that were appropriate to their backgrounds and areas of expertise. This was accomplished by 
initially dividing the stakeholders into three distinct groups:  

Red Team - The red team is made up of individuals with knowledge of cyber-attacks and potential threat 
agent classes. Their work is focused on developing candidate attack vectors and assessing the 
effectiveness of the proposed design patterns. 

Blue Team - The blue team consists of designers and users of the system being protected. Their 
responsibilities include identifying and prioritizing the critical system functions to protect, as well as 
determining which design patterns can be implemented on which system functions. 

Green Team - The green team, which is comprised of experts in system cost analysis and adversary 
capability, will analyze costs, to both the attacker and defender, for candidate architectural solutions.  

3.1.2 Methodology Process Steps 

Step 1: Define the Variables and Relationships within the System to be Protected  

The initial step of the relational methodology is focused on framing the problem to ensure that all 
participants in the process are on the same page regarding the system to be protected. The process 
begins by identifying the critical functions of the system and defining the variables and influence 
relationships within that portion. Step one is to be performed by the blue team and is intended to 
outline the expected functionality of the system with minimal defensive strategies implemented. At this 
point, a system influence relational diagram is constructed using directed acyclic graph (DAG) notation. 
This diagram is created for the system without the consideration of a cyber-attack to ensure that 
everyone involved in the process is in agreement on the most basic structure and components before 
the additional complication of an adversary. 

Step 2: Identify the Possible Paths an Attacker Could Take to Exploit the System  

Step two introduces one of the issues that make this specific problem unique: an intelligent adversary. 
While the system influence relational diagram represents a system where success may be compromised 
by random failures, the cyber security architecture selection problem introduces concerns where the 
decisions made by an active player in the system can also compromise mission success. In step two, the 
red team is tasked with constructing an attack tree for the system functions identified in step one. By 
looking at the system from the perspective of an adversary, attack trees can be utilized to understand 
the possible paths an attacker could take to exploit a specific feature of the system. 

Step 3: Determine the Subset of Attack Actions Most Desirable to an Attacker  

Considerable analysis can be conducted after the construction of an attack tree. However, rather than 
focusing on quantitatively calculating the probability of success for a specific attack path , as is typically 
done in attack tree analysis, the analysis included in this framework considers a more qualitative, 
abstract metric space. In step three, the green team develops a set of variables that can be used to 
assess the difficulty of a particular attack path. These variables are called behavioral indicators and can 
include, but are certainly not limited to, resources such as technical ability, time, manpower, money, 
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equipment, facilities, presence of an insider, and access to system design information. These variables 
are used to make two separate types of judgments: leaf node assessments and adversary profile 
construction.  

Step 4: Identify Appropriate Defensive Actions and Their Impacts on the Attacker  

After the red and green teams have identified the actions that an adversary would need to take to 
successfully execute an attack and the subset of those that are most attractive to a particular adversary, 
the blue team can then determine which of their existing defensive actions may be appropriate. The 
relational methodology relies on the assumption that a portfolio of design patterns has already been 
developed—either by previous blue teams or by an external group no longer involved in the process. If 
the current blue team was not responsible for developing the set of design patterns, it is assumed that 
they have access to the portfolio and the have the necessary knowledge regarding the meaning of each 
design pattern.  

The goal of step four is to select design patterns from the existing portfolio that could be implemented 
to make the actions captured in the leaf nodes of the attack tree less desirable to the attacker. This can 
mean increasing the difficulty, cost, or probability of detection to the adversary or lessoning the 
consequences felt by the defense in the case of a successful attack. 

Step 5: Evaluate the Impacts of the Selected Potential Actions on the Defense  

While step four captures the design patterns’ impacts on the adversary, step five transitions to 
evaluating how those same choices impact on the performance of the system to be. The green team is 
able to apply their second class of intelligence information here: cost analysis estimates for the 
defensive solution choices. At this point, each of the design patterns selected in step four is evaluated in 
regards to implementation cost, lifecycle cost, and collateral system impacts. The green team is 
responsible for estimating the monetary cost of a solution, but the blue team also adds input on a 
solution’s collateral system impact here. The evaluation of the solution’s collateral impacts is performed 
by the blue team since they have knowledge regarding the system, how it will be used, and what 
impacts are unacceptable. Any solutions that are deemed to be beyond the allocated budget for System-
Aware security or introduce unacceptable impacts on system performance can be eliminated from 
further analysis at this point.  

There is one deliverable for this step: a reduced list of possible defensive choices, filtered from the 
original existing design pattern portfolio, to only those that increase the difficulty for the considered 
attacker while still remaining at an acceptable impact to the defense. 

 Step 6: Weigh the Security Trade-offs to Determine Which Architectural Solutions Best Reverse the 

Asymmetry of a Potential Attack  

The goal of the sixth and final step is for all three teams to participate in a collaborative discussion 
regarding the security trade-offs that exist with the potential choices determined in step five. While 
each defensive strategy remaining after step five provides some potential security benefit, has an 
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acceptable impact on the system being protected, and fits within the allocated budget the exact mixture 
of security to defense to budget varies by solution. 

3.1.3 Vulnerability and Threat Analysis Process 

When trying to protect a UAV or UAS from a cyber-based attack, important questions arise when 
identifying priorities for potential threats, purposes, consequences and level of effort to achieve them: 
Which UAV systems and functions, if compromised, can lead to significant disruption? What UAV 
components or system configurations are inherently vulnerable to classes of cyber-attack? Where can 
these threats originate? 

One approach to answering these questions is to begin with a cyber-attack classification schema that 
allows one to reason about vulnerabilities and impacts in a structured way. While most schemas in other 
domains are one or two dimensional in nature, cyber-attacks on cyber physical systems such as UAV 
systems are usually multi-dimensional owing to the fact that the exploits, deployment, and effects of the 
attacks usually involve a multi-vector approach that can occur anywhere along the lifecycle of the UAV. 
Our research for this phase aimed to develop a structured methodology to identify potential 
vulnerabilities, reason about the attack surfaces that exploits may use, and rank the impacts of potential 
cyber-attacks to allow more systematic development of cyber defenses.  

An architectural selection framework for System-Aware cyber enhancement was developed and applied 
to the autopilot system in Phase 1.  We provide an overview of activities for cyber threat analysis efforts 
in this section which supports the overall cyber enhancement architectural selection process:  

1. Define the system functions and relationships between those functions within the system. 
2. Identify the critical system functions and subsystems. 
3. Identify of potential cyber-attacks. 
4. Determine the subset of attack actions most desirable to an attacker. 

3.1.3.1 System Functions and their Interrelations     

The purpose here is to develop an influence graph between major systems such that functional 
dependencies between systems can be reasoned about.   

By studying the general architecture of the autopilot in Figure 5, we can see a natural grouping of 
relationships for the autopilot into four categories:  

 The Controller: The onboard processor executes all of the control laws, flight director functions, 
management of INS (inertial navigation system), GPS, actuators, and the communication links. 
The controller is composed of those functions represented by the red circle in Figure 5. The 
flight controller requires inputs from the sensory subsystem state estimator (e.g. INS, GPS, 
altitude, and speed) to regulate the aircraft to a desired state, speed, position and attitude.  The 
controller also takes input from the flight director which contains the desired trajectory 
reference states for the aircraft. The flight controller uses the information stored in the flight 
director as tracking inputs; thus the flight controller is progressively issuing actuation commands 
to the control surfaces to minimize the error between track references and current aircraft state 
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and position. As such, the autopilot continuously flies the aircraft to each geographical waypoint 
in succession. Attacks directed to the hardware and software of the flight controller can affect 
the behavior of the flight controller so that it does not perform its function as intended.   

 Sensory and Measurement Subsystem:  The sensory subsystem (shown as the blue circle in 
Figure 5) provides all of the sensed vehicle state information needed by the controller to 
maintain stable flight. The functions in this system include the INS which provides vehicle 3-axis 
accelerations, angles, and velocities; GPS which provides geo-reference position and velocities; 
magnetometer which is used to sense heading direction. Thus the total vehicle state is (φ, θ, ψ 
ve, vn, vd, ax, ay, az, and heading)). The total sensor readings combined with the GPS information 
are sensed by the controller on regular time intervals (every 100ms). Examples of attacks against 
the sensory subsystem include false data injection attacks to manipulate sensory data, 
vehicle/system component state data manipulation, and navigational waypoint data 
manipulation.  

 The Communication System: The communication system is responsible for (1) transmitting 
commands to the UAV to alter its flight path and (2) to receive telemetry information about the 
UAV in flight (the communication system is identified by those components in the green circle in 
Figure 5).  The command signals to control the aircraft are transmitted by the operator via a 
line of sight communication transceiver. The ground station communication link operating 
frequency is usually in one of several designated bands (900 MHz or 2.4 GHz are common). 
Various signal modulation methods are used to encode the link channels.  Various channels are 
allocated for each command or telemetry class; i.e., pitch, roll, yaw, and throttle will be on a 
separate channel than GPS. After the onboard receiver decodes the signals from the ground 
station transmitter, the signals are converted to digital commands, processed by the onboard 
main processor. Attacks that target the communication system could affect both the aircraft and 
the command/control station. Telemetry data can be spoofed from the UAV, command 
information can be intercepted an altered, disabling of the communication link, etc.   

 Gimbal Pointing Camera system: UAVs are predominantly used as Intelligence, Surveillance, and 
Reconnaissance (ISR) platforms carrying sensor payloads such as EO/IR cameras, synthetic 
aperture radar, signals intelligence systems, and others. The purple circle shown in Figure 5 
encapsulates the onboard gimbal mounted camera of the UAV. The gimbal is capable of target 
tracking, scene steering and electronic image stabilization.  The gimbal system features an 
onboard processor to control the stabilization effectors, a VPS, and a communication link to 
send images to ground station and to the ViewPoint operator station. The ViewPoint operator 
station is capable of integrating with a moving-map, real-time mosaicing, target tracking, and 
video recording functions.  
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Figure 5. UAV Onboard Systems showing the four major system groups. 

To understand the relationships between the major subsystems, we utilize an influence diagram which is 
a type of DAG. DAGs provide value in situations where a system is characterized by a large number of 
inter-dependent functions/variables that have highly coupled process coordination.  Understanding the 
possible attack scenarios is dependent on understanding the interrelationships among these coupled 
functions. For this reason, they work well for considering a system of this scale and have been used for a 
variety of applications in the safety and reliability fields.  

As shown in Figure 6, a DAG includes a set of nodes and a set of edges connecting the nodes. In the 
system influence diagram shown in Figure 6, nodes represent a functional resource within the system. 
These can be hardware or software components, interfaces, or external factors, all of which have system 
functionality and can influence the outcome of the system service or behavior. The edges connecting 
the nodes represent the influence relations between the nodes. If two nodes are connected that means 
one node is influenced by the other node in order to provide expected service to UAV system. The arrow 
on the edge connection signifies a provides relation. The accepting node signifies a requires relation 

from the edge.  Similarly, if two nodes are not connected, the functionality of one node does not have 
an influence on the other. While a DAG alone overlooks a critical aspect of the problem at hand (the 
presence of an adversary), its construction enables the team to reach a common understanding of the 
system.  
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Figure 6. Influence diagram for used to understand the relationship between the UAV subsystems used 
for navigation. 

 

Figure 6 shows that the output of the Aircraft Navigation (i.e., the success or failure of the aircraft 
navigation function) is dependent on three major factors: (1) the actions of the human operator, (2) the 
functionality of the autopilot hardware/software, and (3) the weather conditions where the platform is 
currently operating. In turn, the autopilot function is dependent (i.e., influenced) by a number of its 
upstream nodes. These include state estimates from the sensor subsystems, pre-flight configurations, 
stored waypoints, communication links, INS, GPS, etc.  All of these upstream nodes, if compromised by a 
cyber-attack, may alter the navigation of the UAV. For instance, if the GPS receiver is compromised in 
such a way that the latitude and longitude coordinates are offset then the navigation tracker will think 
the UAV is in a location where it is not and attempt to move the UAV to the desired waypoint. That is 
this type of cyber-attack would cause the UAV to divert from its planned path.   

Similarly, the diagram shows that the status of the operator display is influenced by static information; 
e.g., maps that are stored in the software and variable information of the state estimates which are 
collected on-board the platform. In turn, the information shown on the display influences the actions of 
the human operator.  

Figure 7 shows the influence diagram for the gimbal camera pointing system. The subsystems of interest 
in this diagram are the camera control processor, GPS, and the sensors and effectors. The camera 
control processor executes software (SW) to implement functions such as, pan-zoom-tilt (PZT), auto-
tracking, point-of-interest tracking, etc. The GPS receiver provides the necessary geo-reference data to 
the control processor and camera to locate and track objects of interest.  The sensor and effector group 
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provides motion-stabilization to the mounted camera during flight. These three factors provide the 
greatest influence to the success or failure to the surveillance mission.  

 

 

Figure 7. Influence diagram used to understand the relationship between the UAV subsystems used for 
gathering surveillance data. 

With a firm understanding of the UAV system functions and how their interrelationships can influence or 
affect the UAV navigation, we can now transition toward identifying critical systems onboard the 
aircraft.   

From Figure 6 and Figure 7, three major subsystems have been identified for further analysis:  

 Autopilot subsystem. 
 GPS subsystem. 
 Gimbal camera pointing systems. 

 

Each of these will be discussed in section 3.2. 

3.1.3.2  Identifying and Classifying Potential Cyber Attacks  

To support this effort we developed a cyber-taxonomy to assist the red team and blue team members to 
think broadly about the origins, effects, and extent of potential cyber-attacks on the UAV. A taxonomy 
or classification schema allows practitioners to have a common basis of understanding. It also allows 
one to systematically reason about cyber-attack characterization as classes. In doing so the analysis of 



Report No. SERC-2014-TR-036-3                                                                                                                             21 
 

cyber-attacks is more organized and easier to transfer to other cyber defense engineering practices.  Our 
taxonomy was developed to support the following analysis inquiries required of the System-Aware cyber 
security framework:  

 What are the different ways of perpetrating an attack against UAV systems? 
 What kind of damage or consequence can these attacks cause? 
 What are the challenges in preventing such attacks? 
 What are vulnerabilities that allow the attack to manifest? 
 What are potential propagation channels of the cyber-attack? 

Figure 8 shows the taxonomy model. Each node at level 2 of the tree (the tree in Figure 8 contains 9 
levels) can be thought of as a dimension in an ordinal structure. That is, each dimension has a specific 
place in the order of the taxonomy. The dimensions of the model include the objectives of the attack, 

propagation means, origin of attack, actions of the attack, vulnerabilities exploited, and target resource, 

effects and consequences. Here the order is organized around the following chain of inference: 

An attack OBJECTIVE by means of PROPAGATION from a lifecycle ORIGIN using malicious 
ACTIONS exploiting a VULNERABILTY on a RESOURCE/TARGET can change system EFFECTS that 
have system CONSEQUENCES 

Below each dimension are sub-dimensions or categories that characterize the parent class dimension 
with respect to the domain of applicability.  This classification schema recognizes that these sub-
dimensions or categories can be modified to fit other domains; e.g., a cyber-attack on a power grid may 
have different sub-dimensions than a UAV (i.e., the target dimension for the power grid would be 
substations and control centers). In addition, new types of attacks that may require new sub-dimensions 
can be added to the schema without altering the basic dimensions.   
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Figure 8. Cyber-taxonomy.  

 

3.1.3.3 Selection of Cyber Attacks to move forward  

Based in part on the cyber-attack profiling detailed in Barbara Luckett’s 2013 thesis, and the 
categorization of cyber-attacks by the taxonomy method described above, we selected several classes of 
cyber-attacks for more detailed analysis and to carry forward to the System-Aware cyber test bed phase: 

 Parameter-Based System Attack 
 GPS System Attacks 
 Gimbal System Attacks 
 Hardware Security Against Manufacturing and Design Attack 

The selection of these attacks is based in part on (1) how each cyber-attack is uniquely different and 
thus stresses the System-Aware cyber security methodology, and (2) how the application of each cyber-
attack may result in different effects on the overall UAV system operations. Before we discuss the 
specific cyber-attack profiles, we first introduce the concept of an attack surface.  While the taxonomy 
described above is beneficial in postulating about the classes of cyber-attacks, it is not intended to 
describe in detail the specific mechanisms or vectors that an attack uses to penetrate the system.  In 
order for our emulated cyber-attacks to reflect actual cyber-attacks, we need to ensure that realistic 
attack surfaces exist for the emulated cyber-attacks in the UAV.         
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3.1.3.4 Understanding Attack Surfaces 

The attack surface of a software environment is the sum of the different points (the attack vectors) 
where an unauthorized user (the attacker) can try to enter or extract data from an environment. The 
model in Figure 9 illustrates the concepts of attack surfaces on several important points. First, successful 
cyber-attacks usually require several attack surfaces to be breached for success. The second notion is 
reachability. Reachability describes the depth or breadth of the influence effects of the attack. In this 
case, the red arrow indicates an attack that deeply penetrates all layers to achieve its objective. The 
third notion is entry and exit points. Entry points define the places where data is inputted into the 
system; thus providing a means for ingress into the system by cyber-exploit. Entry points are associated 
with channels. Channels are means for moving or observing information into a system either directly or 
indirectly. A channel could be a network port, an unused debug port, or a wireless snooper.  The exit 
points define where data or control information can be acquired from a system.  Finally, resources that a 
device uses to input, move, process, and output data are part of the attack surface. Resources have 
entry and exit points, processing channels, and storage. 

 

Figure 9. Attack Surface Concept Model. 

 

3.2 Attack Development  

3.2.1 Parameter-Based System Attack  

UAV autopilot systems are designed to be reusable across a diverse set of aircraft configurations and 
support a variety of mission scenarios. As a result, many of the variables that govern the control 
algorithms for a given flight are parameterized: 

 Maximum and current fuel capacity. 

 Maximum allowable pitch, yaw, and turning radius. 
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 Maximum altitude the aircraft can safely operate. 

 Flight plan for a given mission. 

However, while these parameters allow a given autopilot to fulfill a large number of missions, they also 
provide a potential attack vector that a malicious adversary could use to damage an UAV or compromise 
its ability to carry out its mission objectives. For example, as discussed in section 3.2.3, UAVs are 
primarily used as platforms for providing ISR. An adversary could use a parameter-based attack to 
neutralize a UAVs ability to carry out its surveillance operation through the usage of an embedded 
Trojan horse that would be capable of disrupting the UAV’s ability to gather surveillance in key regions; 
i.e., the Trojan horse would alter the UAV's flight plan when the UAV entered certain geographic 
regions.  

This section will outline one potential parameter-based attack vector against a UAV autopilot. This 
attack will be in the form of a Trojan horse designed to modify the UAV's flight plan stored in the 
autopilot system. The adversary will leverage the fact that the flight plan is stored in the autopilot 
system as a series of waypoints (i.e., destinations) that the aircraft will fly between. When the aircraft 
enters a key geographic region, an embedded Trojan horse will automatically divert the aircraft to 
another waypoint in the flight plan.  

3.2.1.1 Applying the Relational System-Aware Assessment Methodology to the Parameter-Based 

Attack Scenario 

Step 1 

As outlined in section 3.1, the methodology begins by determining which system functions are critical 
and outlining the variables and their influence relationships. At the highest level, the success of the UAV 
mission is dependent on the success of three separate functions: (1) the system navigating to the correct 
location, (2) the sensors on-board working to collect the correct surveillance data, and (3) the platform 
remaining safe and operational throughout the mission. Of those three functions, the aircraft navigation 
was selected as critical. This decision was made in part because this was the area the UVa team had 
been focused on for the majority of the project. Using this to provide the initial scoping for the 
methodology, a system influence relational diagram was constructed for the aircraft navigation function 
using the DAG notation. This influence diagram is shown in Figure 10. 
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Figure 10. System influence relational diagram for the UAV (aircraft) navigation system. 

 

This graph shows that the outcome of the system function (i.e., the success or failure of the aircraft 
navigation function) is dependent on three factors: (1) the actions of the human operator, (2) the 
functionality of the autopilot software, and (3) the weather in the region where the platform will be 
operating. Similarly, the diagram shows that the status of the operator display is influenced by static 
information such as maps that are stored in the software and variable information of the state estimates 
that are collected onboard the platform. In turn, the information shown on the display influences the 
actions of the human operator.  

Step 2 

The second step of the relational methodology is focused on the introduction of an intelligent adversary. 
This perspective is captured by the construction of an attack tree. Based on discussions with the project 
participants, it was determined that a single attack tree would not necessarily represent the whole 
picture of how an adversary may wish to exploit a particular system function. Specifically, the 
adversary’s desire and motivation for attempting the attack has a large influence on the manner in 
which the attack is executed. For instance, for a UAV navigation system attack, two different attack 
paths may exist that could achieve the same outcome (e.g., change the waypoints onboard the 
platforms), but one of those paths may have a higher likelihood of being detected while the other has a 
higher likelihood of success. Thus, an attacker more concerned with remaining undetected may choose 
the attack path that is harder to detect but offers greater assurances the adversary will not be caught. 
By dividing the attack structure into multiple trees the team is able to incorporate the adversary’s 
preferences and motivation as well as consider the value vs. detectability trade-off that is often present 
in the cyber-attack field.  
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For the UAV navigation system attack example, the red team constructed three trees for three different 
attack types; each attack type potentially possessing a different value to a possible attacker: 

1. A minor trajectory change where the adversary makes a minor change to the waypoints in order 
to cause the platform to deviate slightly from the flight path. The intent of this attack is to 
prevent the UAV from operating in designated regions. This attack assumes that the deviation’s 
magnitude and duration are small enough to go unnoticed by the aircraft operator.  

2. A major trajectory change where the adversary drastically alters the flight trajectory in order to 
cause the platform to lose control and crash into the ground. This attack assumes that the flight 
trajectory alterations occur too quickly for the pilot to prevent the aircraft from losing control 
and crashing. 

3. A concealed major trajectory change where the adversary drastically alters the flight trajectory 
in order to reroute the UAV to an alternate destination. This attack assumes that the trajectory 
change on its own will be noticed and can be prevented by an operator taking appropriate 
action(s). As a result, this attack assumes that the adversary will take action to conceal the 
major trajectory change in order to prevent the operator from taking any actions that might 
thwart the attack. 

The Concealed Major Trajectory Change (option 3) tree was selected for the analysis moving forward for 
two reasons. First of all, structurally, all three trees are similar in regards to how the exploit is realized. 
This results in the Concealed Major Trajectory Change tree including the nodes of the other two as well 
as the nodes representing actions to lower the detectability of the attack. Second, the value gained from 
the Concealed Major Trajectory Change attack was most in line with the expected preferences of the 
adversary profiles the project team was most concerned with. 

Figure 11 shows the top level overview of the Concealed Major Trajectory Deviation (i.e., the Concealed 
Major Trajectory Change) attack tree constructed in step two. Due to size constraints, the lower 
portions of the subtrees have been rolled up in Figure 11. There are two example subtrees displayed 
here; the Alter Waypoints attack and the Conceal Flight Trajectory attack.  Similar trees were used to 
evaluate the other attacks considered; i.e., the Alter Navigation Sensor Information attack, the Alter 

Autopilot attack, and the Alter Actuator Controls attack.    
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Figure 11. Top-Level overview of Concealed Major Trajectory Deviation attack. 

 

 

Figure 12. Subtree for Alter Waypoints attack. 
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Figure 13. Subtree for Conceal Flight Trajectory attack. 

 

As seen by the size of the attack trees represented in the figures above, the attack on the UAV 
navigation system exist on a large scale. There are a total of 55 leaf nodes in the Concealed Major 
Trajectory Deviation attack tree alone, which can be executed in various combinations to create a total 
of 817 possible attack scenarios. Additionally, many of the leaf nodes could be broken down even 
further in to more specific sub-trees detailing their execution. However, the scope of this tree is more 
than adequate for the purpose of the relational methodology. It is also impossible to protect against 
every conceivable attack; thus, we must identify those attack vectors that an adversary could perceive 
as both relatively simple exploit and of high value. 

A couple of trends became apparent during the construction of the Concealed Major Trajectory 
Deviation attack tree. First, almost every attack strategy included requires two distinct actions: (1) an 
action to implement the ability to make the desired change and (2) an action to trigger the change 
on/off as needed. To capture this concept, each attack is represented by an AND node with two 
subsequent nodes associated to it—one node representing the change action and another represent the 
triggering mechanism used to initiate the change action. For instance, if the adversary is able to insert a 
compromised chip into the system at some point in the supply chain they must also have some method 
to activate the chip; without a triggering mechanism, the infected software is either always on—which 
could lead to a higher likelihood of the attack being detected and prevented—or is never turned on—
which makes the attack worthless. A second trend identified from the construction of the attack tree 
was the repetition of several different categories of leaf nodes: 

1. Embedded: Where infected hardware/software was added to the system at some point in 
the production process, typically because of a compromised source in the supply chain. 

2. Remote: Where the attack is executed from outside of the system, either through an 
existing link to the system or a completely external factor. 
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3. Insider: Where an individual who has access to critical aspects of the system and detailed-
non-public domain knowledge takes action(s) to exploit the system. 

4. Miscellaneous: Attack actions that do not fit any of the three previous designations; for 
instance, an external decoy (spoofing) or causing a distraction event for the operator. 

Step 3 

As noted previously, it may be infeasible for the blue team to attempt to protect the system against all 
55 attack actions identified in step two. Thus, it is desirable to focus the blue team’s efforts on 
protecting against those attacks perceived as high value to an attacker. The task of identifying a subset 
of leaf nodes that are perceived as high value to a specific attacker is tasked to the green team. This 
filtering process involves assessing both the leaf nodes and a potential adversary profile with regards to 
a set of behavioral indicators, so step three begins by determining the set of necessary behavioral 
indicator variables to use. Table 1 shows the final set selected for the UAV navigation system attack 
example. 

Behavioral Indicator 

Name 

Possible Values Meaning for Leaf Node Assessment 

Design Knowledge  Low 

 Low-Med 

 Medium 

 Med-High 

 High 

What level of design knowledge is required to 
successfully complete the attack action? 

Attack-Specific 

Technical Ability 

 Low 

 Low-Med 

 Medium 

 Med-High 

 High 

What level of attack-specific technical ability is 
required to successfully complete the attack 
action? 

Resources  Low 

 Low-Med 

 Medium 

 Med-High 

 High 

What level of resources (i.e.: facilities and 
equipment) is required to successfully complete 
the attack action? 

Insider Presence 

(Operational) 

 Low  

 Low-Med 

 Medium  

 Med-High 

 High  

To what extent is having an insider present in 
the operational phase of the system 
necessary/helpful in completing the attack 
action?  
 
Note on possible values:  
Low = entirely unnecessary  
Medium = helpful but not required 
High = impossible without 

Insider Presence 

(Supply Chain) 

 Low 

 Low-Med 

 Medium 

 Med-High 

 High 

To what extent is having an insider present at 
some point in the supply chain 
necessary/helpful in completing the attack 
action? 
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Note on possible values:  
Low = entirely unnecessary  
Medium = helpful but not required 
High = impossible without 

Manpower/Time  Low 

 Low-Med 

 Medium 

 Med-High 

 High 

What level of manpower and time is required 

to successfully complete the attack action? 

Table 1. Behavioral indicator variables names, possible values, and meanings for leaf node assessment. 

To assess these values for the set of leaf nodes, a Behavioral Indicator Variables Assessment table was 
created (shown below in Table 2). This table can be reproduced for each of the 55 nodes, and the leaf 
node name can be inserted in the first line for easy identification. Members of the green team are then 
tasked with completing the tables.  

 

Leaf Node Name 

Design 

Knowledge 

Attack-Specific 

Technical Ability 

Resources Insider Presence 

(Operational) 

Insider Presence 

(Supply Chain) 

Manpower 

□ Low 

□ Low-Med 

□ Medium 

□ Med-High 

□ High 

□ Low 

□ Low-Med 

□ Medium 

□ Med-High 

□ High 

□ Low 

□ Low-

Med 

□ Medium 

□ Med-

High 

□ High 

□ Low 

□ Low-Med 

□ Medium 

□ Med-High 

□ High 

 

□ Low 

□ Low-Med 

□ Medium 

□ Med-High 

□ High 

 

□ Low 

□ Low-Med 

□ Medium 

□ Med-

High 

□ High 

Table 2. Behavioral Indicator Variables Assessment table. 

Several different levels of granularity for the behavioral indicator scales were considered before 
deciding on a five point Likert-style scale. Using three (Low, Medium, and High) did not allow enough 
variation while seven (Very Low, Low, Low-Med, Medium, Med-High, High, and Very High) was too many 
choices and caused the participants to become overwhelmed and revert towards the simplest three 
(Low, Medium, and High) in many cases. 

In addition to making judgments regarding the resources required for the various leaf nodes, step three 
also includes an assessment of the resources a particular threat actor is expected to possess. Using the 
same behavioral indicator variables that are used for assessing the nodes (shown again in Table 3 to 
reiterate their meaning in assessing an adversary), an adversary profile can be constructed.  
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Behavioral Indicator 

Name 

Possible Values Meaning for Adversary Assessment 

Design Knowledge  Low 

 Low-Med 

 Medium 

 Med-High 

 High 

To what level do you expect the attacker to have 

access to design knowledge of the system? 

Attack-Specific Technical 

Ability 

 Low 

 Low-Med 

 Medium 

 Med-High 

 High 

What level of attack- specific technical ability do 

you expect the adversary to possess? 

Resources  Low 

 Low-Med 

 Medium 

 Med-High 

 High 

What level of resources (i.e.: facilities and 

equipment) do you expect the attacker to have 

access to? 

Insider Presence 

(Operational) 

 Low 

 Low-Med 

 Medium 

 Med-High 

 High 

What is the likelihood that the attacker has an 

insider present in the operational phase of the 

system?  

 

 

Insider Presence (Supply 

Chain) 

 Low 

 Low-Med 

 Medium 

 Med-High 

 High 

What is the likelihood that the attacker has an 

insider present at some point in the supply 

chain?  

 

Manpower  Low 

 Low-Med 

 Medium 

 Med-High 

 High 

What level of manpower (i.e., time and number 

of people) do you expect the attacker to 

possess? 

Table 3. Behavioral indicator variables names, possible values, and meanings for adversary capability 
assessment. 

These profiles are then used to prune the attack tree—a process that eliminates attack scenarios (and 
thus, leaf nodes) to create a reduced tree that is specific to an individual threat actor.  In future 
applications, a single adversary profile would be created for the threat actor that the group was most 
concerned with. However, for this example, it was decided that there were four potential classes of 
adversaries; each adversary possessing vastly different resources, skills, and motivations. Furthermore, 
all four adversary profiles were constructed in order to highlight the differences among them:  

1. Rogue Insider: An individual that has a specific insider connection to the UAV system 
(i.e., an operator or avionics engineer) and has decided to take action against the 
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system. He/she has specific knowledge about or access to the system, but their 
knowledge is more likely to be narrow in scope and they are severely limited in regards 
to manpower. The individual may not have a particular purpose in attacking the system. 

2. Terrorist Group: A motivated, moderately sized group that is working to compromise 
the system for a reason; e.g., preventing the platform from collecting surveillance 
information in a specific geographic area to prevent the detection of some activity. 

3. Nation State: A country with considerable resources, manpower, and skills that is 
attacking the system for a reason. 

4. Criminal Cyber Group: A moderately sized mercenary group whose goal is to make a 
profit through the use of one or more attack capabilities. For example selling an attack 
capability to a terrorist group or nation state to use against the U.S. Criminal cyber 
groups typically select a target system to which they possess existing access or 
knowledge.  

Table 4 shows the assessments made for each threat actor profile in regards to the six behavioral 
indicator variables.  

 Rogue Insider Terrorist Group Nation-State Criminal Cyber Group 

Design Knowledge Med-High Medium Med-High High 

Attack-Specific 

Technical Ability 

Med-High Medium Med-High High 

Resources High Medium Med-High Medium 

Insider Presence 

(Operational) 

High Med-High Medium Medium 

Insider Presence 

(Supply Chain) 

Low-Med Medium High Medium 

Manpower Low Med-High High Med-High 

Table 4. Adversary Profiles Showing Assessed Behavioral Indicator Levels. 

Utilizing the evaluations of the adversary behavioral indicators, we were then able to prune the attack 
trees to a final list of attack scenarios against the UAV navigation system: 

 Embedded Attack to Change Waypoints at Ground 
 Remote Attack to Change Waypoints at Ground 
 Embedded Trigger to Force Waypoint Update 
 Remote Trigger to Force Waypoint Update 
 Embedded Attack to Alter INS Measurements 
 Embedded Trigger to Cause Alteration of INS Measurements 
 Embedded Attack to Change Parameter Data Tables 
 Remote Attack to Change Parameter Data Tables 
 Embedded Trigger to Cause Parameter Data Tables 
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 Remote Trigger to Cause Parameter Data Table Change 
 Embedded Attack to Add Bias to I/O Commands at the Ground Station 
 Remote Attack to Add Bias to I/O Commands at the Ground Station 
 Embedded Attack to Change HMI Display Software 
 Remote Attack to Change HMI Display Software 
 Embedded Trigger to Cause Display Software Change 
 Remote Trigger to Cause Display Software Change 
 Remote Attack to Change Airplane Position Reports 
 Embedded Trigger to Cause Airplane Position Report Change 
 Remote Trigger to  Cause Airplane Position Report Change 

Step 4 

This reduced set of 19 nodes can be compared with the existing portfolio of design patterns to 
determine which design patterns are the most applicable. A design pattern can be considered applicable 
for several reasons. It can make a leaf node more difficult, uncertain, or expensive, or make it so the 
completing the action requires that the adversary have specialized skills or equipment. Additionally, a 
design pattern may be applicable if it increases the likelihood that the attack can be detected and 
prevented. Finally, a design pattern may be applied if it decreases the consequences on the defense 
team given the attack is still successful.  

The 19 remaining leaf nodes can be grouped into six categories: (1) ground station based waypoint 
change, (2) change of INS measurements, (3) change of parameter data tables, (4) addition of bias/noise 
through the I/O commands at the ground station, (5) spoofing the human machine interface (HMI) 
operator display through a software change, and (6) manipulation of the airplane position report. Table 
5 shows several possible design patterns that were determined to be applicable for each of the 
remaining six attack types.  

Attack Type Design Pattern Detailed Description of DP Functionality 

1. Ground Station 

Based Waypoint 

Change 

Parameter Assurance  Typically, there will be a pre-loaded flight 

plan based on the mission. Parameter 

Assurance compares the waypoints input at 

the ground to the table of values in the 

system to check for large, unexpected 

deviations. 

Data Consistency Checking A change of the waypoints at the ground 

station needs to follow a step order of steps. 

Data Consistency Checking looks to see where 

the change originated from to verify that it 

was initiated by the operator.  

2. Change of INS 

Measurements 

Diverse Redundancy  Diverse Redundancy involves the 

implementation of additional INS devices, 

from diverse manufacturers/suppliers. 

Physical Configuration Hopping Physical Configuration Hopping involves 
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hopping between multiple INS components at 

a pre-determined interval. 

Verifiable Voting Voting involves comparing the values 

returned by multiple INS devices to identify 

and isolate a compromised INS. 

3. Change of 

Parameter Data 

Tables 

Data Consistency Checking  A change of the parameter data tables needs 

to follow a step order of steps. Data 

Consistency Checking looks to see where the 

change originated from to verify that it came 

from a trusted source. 

Parameter Assurance Parameter Assurance compares the 

parameter data table values to a table of 

preexisting “gold standard” of flight control 

values in the system to check for large, 

unexpected deviations. 

4. Addition of 

Bias/Noise Through 

I/O Commands at 

Ground 

State Estimation State Estimation uses existing mechanisms in 

the system to estimate other state variables 

in the system. These values can be used 

indirectly to infer what the state in question 

should be.  

5. Spoofing the HMI 

Operator Display 

Through Software 

Change 

Data Consistency Checking  A change of the HMI display software needs 

to follow a step order of steps. Data 

Consistency Checking looks to see where the 

change originated from to verify that it came 

from a trusted source. 

Parameter Assurance Parameter Assurance involves using a back-up 

system (possibly considerably more 

rudimentary than the main operator display) 

to collect the same information as the main 

display. These values may not be displayed to 

the operator, but the system compares the 

main display values to those collected by the 

back-up display system to check for 

deviations. 

State Estimation State Estimation uses existing mechanisms in 

the system to estimate other state variables 

in the system. These values can be used 

indirectly to infer what the operator display 

should be showing.  

6. Change of Airplane 

Position Report 

Diverse Redundancy  Diverse Redundancy involves the 

implementation of additional radio devices, 

from diverse manufacturers/suppliers (the 

radio is used as an example here because it is 

the source that sends the position 

information from the platform to the ground 
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station, but diverse redundancy could be 

added to another device earlier in the process 

to accomplish the same outcome). 

Physical Configuration Hopping Physical Configuration Hopping involves 

hopping between multiple radio components 

at a pre-determined interval (see note 

regarding diverse redundancy above: the 

radio is only an example for one device where 

physical configuration hopping could be 

implemented). 

State Estimation State Estimation uses existing mechanisms in 

the system to estimate other state variables 

in the system. These values can be used 

indirectly to infer what the state in question 

should be. State Estimation would only work 

in this situation if the change caused by the 

adversary did not affect all of the state 

estimates included in the Airline Position 

Report (the design pattern relies on having 

some secure estimates to use in order to infer 

less secure estimates). 

Table 5 Applicable design patterns for each attack type. 

At this point, these design patterns can be inserted back into the system relational influence diagram 
constructed in the first step to understand how the different defensive strategies complicate the actions 
required by the adversary and how they interact to provide multidimensional coverage of the system. 
Several examples are discussed here to demonstrate the type of insight that can be gained in this step. 

The first defensive strategy to consider is the addition of Parameter Assurance implemented on the 
waypoints stored at the ground station. This design pattern works by maintaining access to a pre-loaded 
flight plan associated with the mission and comparing the waypoints at the ground to these stored 
values to check for large, unexpected deviations from the expected waypoints. In the initial minimal 
defense system depicted in the influence relational diagram from step one, if the attacker wanted to 
execute a ground-based attack of the waypoints, they had to conduct an attack to change the values at 
the ground and also create a trigger to force the waypoints to update to the platform (both of which 
could be embedded within the system through supply chain infiltration or done remotely.) After the 
hypothetical implementation of this design pattern, the attacker still has to do both of those actions, but 
they now also need to consider two additional elements. Adding Parameter Assurance inserts two new 
nodes into the system influence relational diagram: the Preloaded Flight Plan Values and the Parameter 

Deviation Checking Mechanism. In order to successfully execute the attack with Parameter Assurance 
implemented, the adversary still needs to alter the ground station waypoints but also now needs to do 
one of the following: 



Report No. SERC-2014-TR-036-3                                                                                                                             36 
 

1. Change the preloaded table of expected waypoint values associated with the flight plan to 
match their manipulated waypoints values so that the functioning comparison mechanism will 
return that the values are the same. 

2. Alter the parameter deviation checking mechanism so that it will not report that there is a large 
deviation between the two sets of waypoints. 

This increases the complexity for the adversary to successfully execute the attack. As we continue to 
consider the additions of other protections, including diverse redundant components, configuration 
hopping and verifiable voting, we continue to alter the asymmetry of the attack vector making it 
increasingly difficult for an adversary to be able to affect change on all of the components within the 
system that would be necessary to execute the attack. 

Step 5 

Step five is focused on evaluating the potential design patterns from step four in regards to their impact 
on the defensive team. This impact can be categorized into three criteria: (1) implementation cost, (2) 
lifecycle cost, and (3) collateral system impacts. Similar to the behavioral indicator variables assessed in 
step three, a five point Likert scale (with possible values of Low, Low-Med, Medium, Med-High, and 
High), along with an optional notes section for justifying comments, was used here for ease of 
evaluation. Table 6 shows the levels assessed for each design pattern regarding implementation cost, 
lifecycle cost, and collateral system impacts.  
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Attack Type Design Pattern Implementation Cost Lifecycle Costs Collateral 

System Impacts 

Ground Station Based Waypoint 

Change 

Data Consistency 

Checking 

Medium Low-Med Low 

Parameter 

Assurance  

Low-Med  Medium Medium 

Change of INS Measurements Diverse 

Redundancy and 

Physical 

Configuration 

Hopping 

Medium Medium Medium 

Diverse 

Redundancy and 

Verifiable Voting 

Low-Med Medium Low 

Change of Parameter Data 

Tables 

Data Consistency 

Checking  

Low-Med Med-High Low 

Parameter 

Assurance 

Med-High Medium Med-High 

Addition of Bias/Noise Through 

I/O Commands at Ground 

State Estimation Medium Low-Med Low 

Change of the HMI Display 

Software 

Data Consistency 

Checking  

Medium Low-Med Medium 

Parameter 

Assurance 

Med-High Med-High Med-High 

State Estimation Medium Low-Med Low-Med 

Change of Airplane Position 

Report 

Diverse 

Redundancy and 

Physical 

Configuration 

Hopping  

Med-High Medium Med-High 

State Estimation Medium Low-Med Medium 

Table 6. Implementation Cost, Lifecycle Costs, and Collateral System Impacts associated with each 
applicable design pattern. 

At this point, the set of possible defensive solutions can be reduced one more time based on the budget 
available for implementing System-Aware security solutions and preferences regarding collateral system 
impacts. Any design patterns that exceed the budget or have unacceptable collateral system impacts 
can be eliminated during this step. For instance, if Med-High costs over the lifecycle of the system were 
deemed to be over budget and Med-High collateral system impacts were deemed to be unacceptable, 
four alternatives can be eliminated. This would leave eight available alternatives: 

1. Data Consistency Checking implemented on the ground station waypoint file to prevent a 
ground-based waypoint change. 
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2. Parameter Assurance implemented on the ground station waypoint file to prevent a ground-
based waypoint change. 

3. Diverse Redundancy and Physical Configuration Hopping implemented on the INS to prevent the 
alteration of the INS measurements. 

4. Diverse Redundancy and Verifiable Voting implemented on the INS to prevent the alteration of 
the INS measurements. 

5. State Estimation implemented to prevent the addition of bias/noise through I/O commands at 
the ground station. 

6. Data Consistency Checking implemented on the HMI operator display at the ground station to 
prevent a change of the HMI display software. 

7. State Estimation implemented on the HMI operator display at the ground station to prevent a 
change of the HMI display software. 

8. State Estimation implemented to prevent the manipulation of the airplane position report. 

While any strategies eliminated at this point do not need to be fully discussed in step six, it is important 
to note that they have not been completely disregarded. Design patterns eliminated during this step will 
be documented so they can be revisited at a later point if the budget or the team’s views on certain 
collateral system impacts changes.  

Step 6 

Going into the final step, there are eight possible defensive strategies to consider, all of which increase 
the difficulty for a specific adversary to complete one of their most preferred attack actions while 
remaining at an acceptable impact to the defense. While eight is much more reasonable than the entire 
original set of possibilities, it is still more than what the design team can afford to implement. Step six 
involves all of the project participants coming together for a collaborative discussion focused on 
weighing the security trade-offs that exist among these remaining alternatives in order to select a subset 
to be implemented as part of the final solution. There are four factors that should be considered when 
piecing together the final cohesive security architecture: (1) budget, (2) coverage, (3) multi-
dimensionality, and (4) asymmetry.  

Budget is used as the initial prescreening criteria here. The project team as a whole decides that they 
would like to implement about a quarter of the remaining design patterns and are comfortable with the 
implementation costs associated with two or three Low-Med or Medium valued solutions. The idea of 
system coverage is used as a second prescreening filter. After completing all of the analyses throughout 
the framework, team members will probably have certain alternatives of interest in the remaining set 
because of the areas of the system they protect or the types of attacks they protect against. For this 
example, it was determined that the team was more concerned with the flight trajectory change itself 
than the concealment of that change. Narrowing the coverage scope in this regard made sense because 
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protecting against the change itself protects the system against all three valued attack trees (rather than 
just the Concealed Major Trajectory Deviation tree), and if the action to alter the flight trajectory is 
difficult enough that the attacker can’t complete it, the actions to conceal it become unnecessary. 
Specifically, the team wanted to focus on the possibility that the adversary would alter the navigation 
via a ground-based waypoint change or alteration of the INS values on board the platform and thus 
wanted to further examine the options for protecting against these threats. Three possible solutions 
were constructed to be compared in a more detailed analysis: 

1. Implementation of both parameter assurance and data consistency checking on the ground 
station waypoint file to prevent a ground-based waypoint change. 

2. Implementation of both diverse redundancy, physical configuration hopping, and verifiable 
voting on the INS to prevent the alteration of the INS measurements. 

3. Implementation of one defensive strategy on the ground waypoint station and one on the 
INS device (specifics determined by the analysis of architectures 1 and 2). 

These three architectural solutions were analyzed in regards to each one’s impact on the adversary 
relative to its impact on the defense. Since there were six behavioral indicator variables used to assess 
the attack actions and construct the adversary profiles, the impact of a defensive strategy can be 
assessed across six different dimensions.  Different defensive actions will increase the difficulty for an 
attacker in different areas, and an optimal solution can be constructed by combining strategies that 
complement each other in regards to the multidimensionality. The impacts associated with the 
Parameter Assurance and Data Consistency Checking for Parameter Assurance and Data Consistency 
Checking Implemented on the Ground Station Waypoint File are listed in Table 7.  

Parameter Assurance Data Consistency Checking 

Impact to Defense Impact to Adversary Impact to Defense Impact to Adversary 

Implementation 

Cost: 

Low-Med 

Design Knowledge: 

Medium 

Implementation 

Cost: Medium 

Design Knowledge: 

Medium 

Lifecycle Cost: 

Medium 

Attack-Specific 

Technical Ability: 

Low-Med 

Lifecycle Cost: 

Low-Med 

Attack-Specific 

Technical Ability: 

Med-High 

Collateral System 

Impact: 

Medium 

Resources: 

Low-Med 

Collateral System 

Impact: 

Low 

Resources: 

Med 

 Insider Presence 

(Operational):  

Low 

 Insider Presence 

(Operational): 

Medium 

Insider Presence 

(Supply Chain):  

Medium 

Insider Presence 

(Supply Chain): 

Med-High 

Manpower/Time: 

Low-Med 

Manpower/Time: 

Medium 

Table 7 Impact to Adversary Relative to Impact to Defense for Parameter Assurance and Data 
Consistency Checking 
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For demonstration purposes in this project, implementation of the parameter assurance for the 
waypoint change was chosen by the project team for this application and it was also enhanced to 
include protection on both the ground and in the air. 

3.2.1.2 Parameter-Based Attack Implementation Details 

There exist multiple insertion points where a malicious adversary could embed the Trojan horse into the 
Piccolo autopilot in order to divert the aircraft to another waypoint in the flight plan: 

1. Directly into the Piccolo autopilot's hardware.  

2. Algorithms used to control the aircraft's flight. 

3. The Piccolo autopilot provides support to allow up to five external devices to connect serially 
using the RS-232 protocol. Once connected, these devices are able to passively monitor the 
flight status of the Piccolo autopilot, extract information from the Piccolo autopilot, and modify 
the Piccolo autopilot's flight parameters.  

The attack outlined in this section assumes that the adversary will utilize option (3): 

 All three attack vectors will enable the adversary to alter the flight plan; however, option (3) 
requires the least modification to the existing Piccolo autopilot. 

 Simplifies the reconfiguration of attack parameters; e.g., option (3) makes it simpler to 
experiment with alternative triggering mechanism used in the attack. 

 Attack can be implemented on any platform that can send and receive using the RS-232 
protocol, including laptops, desktops, SBC, etc. 

For the Phase 1 implementation of the parameter-based attack, the Trojan horse has been implemented 
on a laptop running Microsoft Windows 7© connected to the Piccolo autopilot over one of the available 
serial connections. In addition, the Trojan horse is able to be triggered by either entering a specific 
geographic region, or, to facilitate experimentation, the laptop allows for a malicious user to redirect the 
aircraft to any waypoint through a simple text based interface. All testing of the attack will be performed 
using the Piccolo autopilot's HiL emulation capabilities outlined in section 2. The integration of the 
attack platform into the HiL can be seen in Figure 14. 
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Figure 14. Piccolo II HiL configuration with an Embedded Attack Platform to dynamically direct the UAV 
to a specified waypoint during flight. The Embedded Attack Platform is a laptop connected to the Piccolo 

II autopilot via a serial connection using the RS-232 protocol. 

3.2.1.3 Masking the Parameter-Based Attack to Prevent User Detection 

The attack implementation outlined in section 3.2.1.2 would be sufficient to compromise a UAV's 
capacity to fulfill its designated mission. For example, an adversary would be able to use the embedded 
Trojan horse to create no-fly zones for the UAV's; enabling them to operate in a given region without 
the risk of detection. However, changing a UAV's flight plan mid-flight is an action that could be readily 
recognized by the UAV's operator. As a result, the attack might only be effective for a short duration 
before it was detected and corrected. In addition, the operator might be able to take actions to salvage 
the mission; e.g., the operator might call in the assistance of one or more near-by UAVs to take over the 
mid-mission. Thus, if an adversary desires such an attack to be effective over the course of multiple 
missions, they will need to take steps to ensure that the attack is not easily detectable. 

To reduce the risk that the embedded Trojan horse will be detected, the adversary decides to 
coordinate the parameter-based attack (i.e., flight-plan alteration) with an attack against the operator 



Report No. SERC-2014-TR-036-3                                                                                                                             42 
 

display (i.e., PCC). This attack will mask any alterations in the flight plan from the operator display. 
Specifically, when the Trojan horse embedded into the Piccolo autopilot redirects the UAV to an 
alternate waypoint the attack against the PCC will display the UAV flying along the previously unaltered 
flight-plan. 

Figure 15 shows how the attack platform used to attack the operator display is integrated into the HiL 
emulation environment. In this instance, the attack is hosted on a SBC that intercepts all communication 
between the operator display (PCC) and the ground station. As was the case for the Trojan horse 
embedded onto the UAV, this configuration affords an easily reconfigurable attack platform to facilitate 
experimentation while minimizing its impact on existing systems. It is noted that this is not the only 
available point for insertion. For example, the display masking attack could be embedded into the PCC 
itself.  

 

Figure 15. Embedded attack platform for masking the operator display on a SBC. 

 

3.2.1.4 Implementation of the Parameter-Based Attack by Compromising the PCC 

As described in section 3.2.1.3, it is possible for the adversary to initiate a clandestine parameter-based 
attack against the Piccolo autopilot. However, such an attack requires two embedded attack platforms 
working in a coordinated fashion. Furthermore, each of these platforms has to be embedded into two 
distinct subsystems. This section explores an alternative attack vector requiring the adversary to 
compromise only one subsystem. 

Figure 16 shows the configuration for the HiL emulation environment that initiates a ground-based 
version of the same parameter-based attack as described section 3.2.1.3. For this configuration the 
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embedded Trojan horse responsible for initiating the parameter-based attack is embedded directly into 
the PCC using its plugin capabilities. This attack has the advantage of only requiring the adversary to 
compromise the ground-based operator display; however, it is also a potentially easier attack to purge. 
As the attack is not embedded with the Piccolo autopilot, it can be purged mid-flight by simply swapping 
in an uncompromised PCC to control the aircraft. 

 

Figure 16. Piccolo II HiL configuration with Embedded Attack Platform to dynamically direct the UAV to a 
specified waypoint during flight while masking the change from operator display. Attack is a plugin 

embedded into the PCC. Embedded attack platform for masking the operator display is a SBC that sits 
between the connection from the PCC and the ground station. 

3.2.2 GPS System Attacks 

3.2.2.1 Applying the Relational System Aware Assessment Methodology    

Step 1 

The process begins by identifying the critical functions of the gimbal system and defining the variables 
and influence relationships among those functions. Step one is to be performed by the blue team and is 
intended to outline the expected functionality of the system with minimal defensive strategies 
implemented. At this point, a system influence relational diagram is constructed using DAG notation as 
described previously.  

Figure 17 shows the influence diagram for the gimbal camera pointing system. As seen in the diagram, 
the subsystems of interest are the camera control processor, GPS, and the sensor and effector group. 
The camera control processor executes SW to implement functions such as Pan-Zoom-Tilt, auto-
tracking, point of interest tracking, etc. The GPS receiver provides the necessary georeference data to 
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the control processor and camera to locate and track objects of interest. The sensor and effector group 
provides motion-stabilization to the mounted camera during flight. The camera control processor also is 
a downstream device to the GPS receiver; thus, it is also a possible host for embedded malware to alter 
GPS measurements as they are streamed into the control processor. The GPS receiver, gimbal sensors 
and effectors, and gimbal control processor are the three systems that most influence the success or 
failure of a given surveillance mission. Of these three, the GPS receiver is of particular interest because 
GPS measurements greatly influence the georeferencing of the image data from the camera.     

 

 

Figure 17. Camera gimbal influence diagram. 

Step 2  
In step two, the red team is tasked with constructing an attack tree for the specific system function 
considered in step one. In this case, it is the attacks on GPS metadata. Metadata is all of the recorded by 
the gimbal and the UAV to provide a complete solution to georeferencing the surveillance information 
collected by the UAV. This typically includes gimbal pointing angles, PZT of the camera, UAV attitude 
data, GPS data, etc. By looking at the system from the perspective of an adversary, attack trees can be 
utilized to understand the possible paths an attacker could take to exploit a specific feature of the 
system. The attack tree in Figure 18 represents the possible vulnerabilities an adversary could exploit to 
alter GPS measurements in the metadata stream.  The attack tree is organized into four viable attacks 
categories:   
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Supply Chain Attack on GPS Receiver: A Trojan embedded into the firmware of the GPS 
receiver. 

Down-stream GPS Malware Attack: An attack on a downstream device that is receiving GPS 
data. The GPS data it receives is manipulated before it is used by the device.   

Manipulated GPS Firmware Attack: An attack injected during system integration. In this 
scenario, updated system patches or firmware for the GPS receiver is altered prior to being 
loaded onto the GPS receiver.  

External GPS Attack (Spoofing): Spoofing one or more GPS signals external to the UAV from a 
phase-coherent spoofing device that causes the GPS receiver to falsely lock onto the spoofed 
signals.   

 

 

Figure 18. Attack tree for GPS attacks to alter georeference data.  

In Figure 18 the attacks are organized from left to right based on difficulty of executing the attack. The 
first attack is the manipulated firmware attack. GPS devices are pervasive in consumer products; as 
such, the suppliers of GPS often provide open API’s and a variety of firmware packages to suit the needs 
of a diverse customer base. The firmware packages offered are usually placed on a FTP server (File 
Transfer Protocol) for customers to retrieve. This leaves them open to skilled adversaries who can 
retrieve the GPS firmware by masquerading as a legitimate client or simply crack the FTP site. Once the 
firmware binaries are downloaded, reverse engineering methods and tools can be applied to the 
firmware to deduce its functionality and operations.  After analysis of the firmware is complete, suitable 
locations in the firmware are selected for inserting malware to alter GPS position calculations based on 
trigger. The compromised malware is then delivered to a specific target system integrator or user of the 
UAV.  There are a number of delivery mechanisms that can be used to fool the vendors into inheriting 
the compromised firmware. One such method employs special probe detectors in the vendor’s servers 
that detect a request to the firmware FTP site by the vendor personnel. The probe detectors will allow 
the download request to proceed, but it will swap and replace the authentic firmware with the 
compromised the compromised firmware unbeknownst to the users.     
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The second attack is an indirect attack on GPS measurements. That is, the systems that use or process 
GPS sensor data are compromised in such a way that the GPS data is altered before they can use it. This 
type of attack exploits vulnerabilities in the system dataflow protocol and development tools for the 
systems that use the GPS data. In this attack, the communication API’s of the system that define how 
data is formatted, where certain data is identifiable by header packets, and protocol for 
communications is exploited for intercepting and modifying GPS data before it is used by the 
downstream device. Typically, this attack requires a man-in-the-middle attack posture. In our case the 
GPS device and Gimbal Control Processor are directly connected together via a serial link. Thus, the 
man-in-the-middle exploit will reside on the input of the control processor as part of the input 
processing software or protocol conversion software. In either case, it requires some form of malware 
to be loaded onto the control processor. The malware will alter the GPS data base on a trigger.  

The next type of attack is a supply chain attack. In this case, an insider in the GPS vendor company is 
colluding with an external agent to place stealthy malware deep into the GPS firmware. The insider must 
have access and authorization to configure the firmware on the SW development tools, hide the 
changes from test engineers, and be skilled enough to craft or insert the malware in the right place. This 
type of attack requires the coordination of many complex activities involving human intelligence, skilled 
adversaries to work with an insider, and circumventing product security measures. This attack is the 
most difficult, only possible in the realm of highly developed adversaries, but can extremely effective.  

The last type of attack is external GPS signal spoofing. All of these exploits are externally executed 
through a special RF spoofing device (phase-coherent signal synthesizers)—a device that simultaneously 
receives and transmits civil GPS signals. This type of attack causes the GPS receiver to falsely lock onto a 
fake GPS signal that is used to provide false updates to the UAV systems.  We provide this type of attack 
in the tree as a measure of completeness, we do not intend to investigate countermeasures to this type 
of attack as it out of scope of this project, and has been widely researched by others. 

Triggers for GPS system attack are considered as well. Typically, an adversary who has embedded a GPS 
exploit in the gimbal system would want to coordinate the attack with some form of trigger. An example 
of a trigger could be when the gimbal camera system is deployed activate the attack, or when the GPS 
stream data indicates XYZ latitude and longitude coordinates activate the attack.  These triggers can be 
embedded internally with malware or perhaps triggered externally.  For an external trigger to work, the 
adversary would have to gain access to the RF telemetry channel that is used to communicate to the 
ground station.  This could possibly be accomplished by spoofing the telemetry channel on duplicate but 
a higher powered transmitter of the same type as the ground station. Alternatively, the ground station 
software could be compromised in such a way as to stealthily upload trigger commands to the gimbal 
system.      

Step 3  

In step three, the red and blue team develops a set of variables that can be used to assess the difficulty 
of a particular attack action. These variables are called behavioral indicators and can include, but are 
certainly not limited to, resources such as technical ability, time, manpower, money, equipment, 
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facilities, presence of an insider, and access to system design information. These variables are used to 
make two separate types of judgments: leaf node assessments and adversary profile construction. The 
adversary profile is the characterization of an attack agent. In our work, these are nation states, cyber-
criminal groups, terrorists groups, and rogue agents.  Leaf node assessments are directed with respect 
to a particular adversary group. Annotating the leaf nodes with a graded five point scale from low to 
high provides the basis for pruning the attack tree to select attacks that are desirable to attackers.  An 
example of a pruned tree is in Figure 19, where the supply chain attack has been pruned due to the 
relative difficulty of the attack for the rogue agent to perform. Pruning is always done with respect to a 
specific threat agent profile; as such, the supply chain attack would not be pruned for the nation state 
threat agent because it is within their capability to conduct such a complex attack.  

 

 

Figure 19. Pruned Attack Tree. 

 

Based on the analysis of step three, all attacks are within the capability of the nation state threat actors.  
Rogue agents, cyber-criminals groups, and terrorists groups can execute manipulated firmware attacks 
and downstream GPS attacks. Cyber-criminal groups can additionally execute GPS spoofing attacks. For 
the remaining analysis in steps four through six we focus on nation state actors and evaluate cyber 
defenses for the gimbal system.  Based on the attack tree analysis the most desirable attacks for a 
nation state actor are ranked in the following order:  

1. Manipulated Firmware attacks 
2. Downstream GPS malware attack  
3. External Spoofing 
4. Insider supply chain attack 

 

Steps 4-6  

Step three identified attack scenarios and actions that an adversary would need to take to successfully 
execute an attack and those that are most attractive to a particular adversary. Based on the ranked 
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attack scenarios the blue team can determine which cyber defensive actions may be appropriate to 
provide strong asymmetry against the attack scenarios. Referring to Table 8, the design patterns are 
assessed with respect to the four attack scenarios. Column 1 is the attack scenario provided by step 
three. Column 2 is the selected design pattern to defend against the attack. Column 3 is the 
implementation cost of the design pattern. Column 4 is the collateral system impacts of the design 
pattern; i.e., how the design pattern negatively impacts the performance of the system. The design 
patterns evaluated for the GPS gimbal attacks are diverse redundancy of GPS modules and verifiable 
voting of the diverse GPS module measurements. Diversity of GPS modules provides defense against 
supply chain attacks. Redundancy of GPS modules provides defense against directed attacks on a 
specific GPS modules firmware. Redundancy and consistency checks are required for detecting a 
downstream GPS attack. Recall in a downstream attack, the source GPS module is not compromised but 
the downstream components that use GPS measurements are corrupted. In this case, the downstream 
devices need a consistency check on their GPS data, and this is accomplished by feeding back their GPS 
measurements to the Sentinel for checking against the redundant measurements. In the presence of an 
attack, the downstream received measurements would be different from the ensemble of redundant 
GPS modules. GPS spoofing can be detected by a number a methods that are available in the open 
literature.  The Tippenhauer is one such method. The basic idea of the Tippenhauer countermeasure is 
the following:  four GPS receivers are placed on the UAV separated by at least 4 meters. The distances 
between the GPS is accurately surveyed and known.  If the GPS receivers can exchange their individual 
GPS surveyed locations, they can check if their calculated locations preserve their physical formation 
(within certain error bounds). In the case that the calculated GPS locations do not match the known 
formation, an attack must be suspected and there should be a warning message. This defense requires 
additional GPS receivers (beyond what is needed for UAV operations) to be placed on the UAV at 
maximal separation points of the vehicle, such as the nose, tail and wingtips.   

 

Attack Type Design Pattern Implementation 
Cost 

Collateral System 
Impacts 

Embedded GPS Receiver Attack 

(Supply Chain Attack) 
Diverse Redundancy 
of GPS Modules and 
Verifiable Voting 

Low-Med Low-Med 

Down-stream GPS Malware 

Manipulation Attack 
Redundancy of GPS 
Modules, feedback, 
Consistency checks 

Med Med 

External Spoofing of GPS Signal Tippenhauer Method   Med-High Low-med 
Manipulated GPS Firmware Attack Diverse Redundancy 

of GPS Modules and 
Verifiable Voting 

Low-Med Low-Med 

Table 8. Impact of design patterns on the system. 

The final steps in the process are to weigh the security trade-offs to determine which design pattern 
solutions are appropriate. The final steps are collaborative, all three teams return together and 
participate in a discussion regarding the security trade-offs that exist with the potential choices. While 
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each defensive strategy remaining after step four has an acceptable impact on the attacker and on the 
defense, some may be better choices than others based on cost, effectiveness, and complexity. To carry 
out this assessment we go back to the influence diagram and instantiate the graph with the cyber-
defense design patterns we have pre-selected. The annotated graphs shows where the design patterns 
are present in the system data-flow, what components are influenced by the additional 
hardware/software, and the security coverage of the design pattern with respect to the system as a 
whole.  For sake of brevity, we provide a synopsis of the process in Table 9.  The second row in the 
header indicates the specific attack scenario. The third header row indicates design patterns used to 
defense against the attack. The fourth header row indicates impact to designer (in terms of cost, and 
collateral impacts) and impacts to adversary. In the case of adversary impacts, the behavioral indication 
reflects the increase, decrease, or unchanged skills needed to carry out the attack after the design 
pattern has been added. This is an indication of the asymmetry effectiveness against threat actor.   
Overall, both design patterns increase asymmetry of the system. The trade-offs occur by examining the 
what the designer’s costs are for implementing the design patterns versus the cost to adversary to carry 
out the attack in view of the added defenses. In both cases, the costs to the adversary are significantly 
increased, while the system designer’s costs are only modestly increased. In summary, both proposed 
design patterns are acceptable choices to carry forward.    

 

 

  

Gimbal GPS Metadata Attack 

Embedded GPS Receiver Attack (Supply 
Chain) 

Down-stream GPS Malware Manipulation 
Attack 

Diverse Redundancy and Verifiable Voting Redundancy of GPS Modules, feedback, 
Consistency checks 

Impact to Defense Impact to Adversary Impact to Defense Impact to Adversary 

Implementation 
Cost: 
Low-Med 

Design Knowledge: 
Increased to High 

Implementation 
Cost: 
Med 

Design Knowledge: 
Increased – Med-
high 

Collateral System 
Impact: 
Low-Med 

Attack-Specific 
Technical Ability: 
Increased Med-High 

Collateral System 
Impact: 
Med 

Attack-Specific 
Technical Ability: 
Increased to Med-
High 

 Resources: 
Increased to High 

 Resources: 
Unchanged -Med 

 Insider Presence 
(Operational):  
Increased to Med 

 Insider Presence 
(Operational):  
Increased - Low-med 

 Insider Presence 
(Supply Chain):  
Unchanged High 

 Insider Presence 
(Supply Chain):  
Unchanged low 

 Manpower/Time: 
Increased to  Med-High 

 Manpower/Time: 
Increased-  Med-high 

Table 9. Effects of System-Aware defense on the system and attacker for the gimbal GPS metadata 
attack.  
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3.2.2.2 Introduction to GPS System Attack 

Many autonomous and unmanned systems rely on GPS for navigation and control. This makes GPS an 
especially enticing target for the cyber-attacker. This attack scenario assumes that malicious hardware 
or software has been inserted into the GPS processor at some point along the supply chain. A triggering 
mechanism is included in this malicious hardware or software so that the GPS processor will report 
incorrect position information when triggered. The malicious deviation to the reported position will be 
introduced in a manner so that it is difficult to distinguish the malicious deviations from natural changes 
in position information. 

The triggering mechanism may be external or internal to the GPS processor. An external trigger might 
arrive through an external radio channel or through conditions presented by other systems or sensors in 
the vehicle. An internal signal might be based on the sensed position. Thus, when the vehicle 
approaches coordinates stored in the GPS processor the malicious response is triggered. 

While the malicious response could involve rapid and significant corruption of the position reported by 
the GPS, such rapid corruption of navigation data would be quickly and easily detected. A rapid and 
significant navigation disruption might be misinterpreted as a faulty GPS processor rather than a 
malicious attack, but either interpretation would prompt an immediate response to address the 
problem. Thus, the attack scenario anticipates that the malicious deviations will be introduced in a 
manner to make them difficult to distinguish from natural changes. An example of such masked 
deviations might involve a gradual introduction of error into the position data over a period of time so 
that the vehicle navigation system is slowly walked off of the correct position. The navigation system 
response would be to compensate for this slowly introduced position error in order to keep the vehicle 
on its intended course. These compensating corrections would slowly move the vehicle further and 
further off of its intended course. 

3.2.2.3 High Level Description of GPS Attack 

Two illustrative examples for this attack scenario have been prepared. The first of these examples is 
applied using HiL emulation in a laboratory environment. The second of these examples is applied to an 
autonomous vehicle in operation. This report describes the approach taken and the results obtained for 
the first of the two examples. 

The first example uses the Piccolo autopilot hardware and software in the HiL emulation. The autopilot 
includes both GPS and INS components, but these systems are not used for the HiL emulation. Rather, 
this data is supplied by a simulator. Similarly, the autopilot normally provides control signals to actuators 
that control the behavior of the vehicle. During the HiL emulation, these control signals are sent to the 
simulation. Thus, the simulator establishes the initial position and orientation of the vehicle. The 
autopilot has a desired path to follow, and it sends control information to the simulator in an attempt to 
move the vehicle along this desired path. The simulator interprets the control information in the context 
of the vehicle capabilities and determines the updated position and orientation data that is sent to the 
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autopilot. The particular autopilot used in this example communicates with the simulator using a CAN 
bus interface as described as described in section 2. 

The second example will not be allowed to influence the trajectory of the vehicle directly because of 
safety concerns. However, there are enough other uses of position data on autonomous vehicles so that 
the scenario can be adapted to retain its attack capabilities while not compromising safety. The 
anticipated variation will apply the malicious and stealthily corrupted position to the metadata 
associated with captured images. Any live images linked from the vehicle to the base station will not be 
changed, but the changes in metadata will make it difficult to correlate captured data with cartographic 
databases. 

3.2.2.4 GPS System Attack Specifics 

The first example uses HiL emulation in a laboratory environment. The particular autopilot used in this 
example communicates with the simulator using a CAN bus as illustrated in Figure 20. 

 

Figure 20. Autopilot to Simulator communications. 

The figure shows that the control signals from the autopilot are conveyed to the simulator over the CAN 
bus. The simulator sends status data to the autopilot that would normally come from various sensors in 
the vehicle or in the autopilot. The GPS position data that would normally come from a GPS unit in the 
autopilot instead comes from the simulator through the CAN bus. 

The CAN bus conveys data between devices in message frames. A frame contains header information 
along with the data in channels. For example, the message frame containing the GPS position data 
includes two channels: one for latitude and one for longitude. Each frame is distinguishable by its 
header information. Channels for each frame are then found in locations fixed for each message type 
within the data portion of the frame. 

3.2.2.5 The Attack Simulation 

The HiL emulation configuration suggests a direct path for implementing the example attack scenario. 
The simulation can be attacked by breaking the CAN bus between the autopilot and the simulator and 
inserting another device that can interpret and modify the message frames. This simulated attack 
configuration is illustrated in Figure 21. 
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Figure 21. Simulated attack configuration. 

The figure shows that all message traffic between the autopilot and the simulator passes through the 
attacker. For normal operations, the attacker forwards to the simulator all message frames sent by the 
autopilot. The attacker also forwards to the autopilot all message frames sent by the simulator. In this 
mode of operation, the HiL emulation proceeds as it would without the attacker in place. Initial 
experimentation confirmed that the HiL emulation proceeded as normal when the attacker simply 
forwarded all message frames in this manner. 

The simulated attack requires that all message frames from the autopilot continue to be forwarded 
unchanged to the simulator. Also, message frames from the simulator must continue to be forwarded 
unchanged to the autopilot unless they are GPS position message frames. The attack requires that the 
attacker modify the data in the channels of the GPS position message frames before it is forwarded to 
the autopilot. These channels convey the latitude and longitude data to be corrupted. 

The attack simulation was implemented using LabView running on a personal computer with two USB to 
CAN bus converters. This personal computer acted as the attacker. The physical CAN bus between the 
autopilot and the simulator was disconnected. The simulator CAN bus was connected to the attacker 
computer through one of the CAN bus converters. The autopilot was connected to the attacker 
computer through the other CAN bus converter. A LabView VI1 was written to accept CAN message 
frames from both CAN interfaces and forward the frames received on each interface to the other 
interface. In this configuration, the simulation acted as normal. 

The LabView VI in the attacker computer was then modified so that all CAN message frames continued 
to be forwarded as initially configured unless the CAN frames from the simulator were detected to be 
GPS position frames. The channels in these GPS position frames were decoded into latitude and 
longitude values and were written to a file. In addition, the LabView VI accepted latitude and longitude 
corruption value inputs that were added to the latitude and longitude values before the VI reassembled 
the GPS position message frame and sent it to the autopilot. Thus, the VI supported arbitrary 
adjustment to the GPS position values reported to the autopilot. 

                                                           
1 LabView is a graphical language that is proprietary to National Instruments. A LabView VI is a Virtual 
Instrument that is roughly equivalent to a computer programming routine. 
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As the attacker adjusted the reported GPS position, the autopilot adjusted the vehicle controls to 
correct the perceived position error. Thus, the autopilot drove the vehicle off of its intended course to 
correct the error introduced by the attacker. This is illustrated in Figure 22 which shows the deviation in 
the UAV’s ground track. 

 

Figure 22. Example of GPS attack. 

The figure shows the intended path for the vehicle using the solid gray line. At some point, the attacker 
starts moving the reported position down as shown in the figure so that the reported path deviates 
below the planned path. This is shown as a dotted line in the figure. The autopilot responds by adjusting 
the controls to keep the vehicle on the planned path. This actually causes the vehicle to deviate from the 
planned path in a direction opposite to the malicious change. This actual path is shown as a dashed line 
above the planned path in the figure. After the vehicle has moved beyond the area that the attacker 
wanted to protect, the attacker reduces the malicious deviation in the reported path until the vehicle 
returns to the planned pattern 

3.2.3 Gimbal System Attacks 

3.2.3.1 Introduction to Gimbal Attacks 

UAVs are predominantly used as ISR platforms carrying sensor payloads such as EO/IR cameras, 
synthetic aperture radar, signals intelligence systems, and others.  As a result, sensor technology is 
evolving quickly, with new sensor systems being developed for all classes of UAVs.  However, in the push 
to quickly field these new sensor suites and take advantage of their capabilities, cyber security is 
sometimes neglected.  This creates an opportunity for an attacker to compromise a mission by 
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exploiting weaknesses in the payload security; e.g., an attacker could degrade or deny the payload 
service or spoof the information coming from it. 

To investigate methods for preventing, detecting, and countering potential cyber-attacks against UAV 
sensor payloads, the GTRI studied potential cyber-attacks and corresponding cyber security solutions for 
the TASE 150 camera gimbal system on its GAUSS UAV.  The TASE 150 is a member of the popular and 
widely used family of TASE camera gimbal systems developed by Cloud Cap Technology. The following 
sections describe potential attack vectors for the camera gimbal. Section 3.3.4 describes one approach 
to protect against these attacks.  

3.2.3.2 High Level Description of Gimbal Attack 

In order to determine the simplest vector to compromise the TASE camera gimbal, the GTRI analyzed 
the specifics of the TASE gimbal, the ViewPoint ground station software (used to view the video), and 
the communications protocol used to issue commands to the gimbal as well as receive status updates 
from the gimbal. This analysis revealed that the simplest attack vector would be to cause a denial of 
service or degradation of service by sending malicious, unauthorized commands to the gimbal from a 
malware exploit running on the operator interface machine (i.e., the machine hosting the PCC and 
ViewPoint). 

This type of attack is possible because it is assumed that the source for all gimbal commands can be 
trusted. This means that as long as an attacker can communicate with the gimbal, she can have it 
execute any command that she wants. In addition, there are multiple commands that can potentially be 
exploited by an attack to cause a denial or degradation of service. Together, these factors suggest this 
path of attack. 

The attack vector chosen for this study embeds a malicious exploit into ViewPoint. Embedding the 
malicious exploit is made possible by the open architecture of the ViewPoint and PCC software that 
allows developers to create plug-in software modules for added functionality.  In addition, the PCC and 
ViewPoint allow users to go online and download maps and aerial imagery from several different map 
databases.  No particular security measures are in place for users downloading maps onto the machine 
hosting the PCC or ViewPoint. Together these features provide a potential attack vector. 

An alternative attack vector was considered that required communicating with the gimbal directly from 
a rogue wireless command tower. However, it was determined that the simplest solution would be to 
use the already established communication channel. In addition, solutions designed to detect malicious 
data sent from the operator interface should also be able to detect malicious data sent from an 
alternate source. 

3.2.3.3 Gimbal Attack Specifics 

The attack is an exploit embedded into ViewPoint that sends malicious data to the gimbal. The data will 
be unauthorized but properly constructed command packets designed to cause a denial or degradation 
of service. The exploit has the ability to construct the command data, compute the checksum, and send 
it to the gimbal. In addition to sending malicious data, the exploit can also produce non-malicious data 
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at random intervals to attempt to hide the malicious data. The following are commands that could be 
used for a degraded or denial of service attack. 

3.2.3.3.1 0x00 / 0x43: Extend/Retract Gimbal 
By issuing commands to retract the gimbal during critical points in the mission, an attacker can cause 
the loss of a significant amount of information. By continuously issuing the command to retract the 
gimbal an attacker can cause a complete denial of service of the payload. 

3.2.3.3.2  0x00 / 0x70: Disable Motor Driver 
As with the Retract Gimbal packet, this command can cause a similar denial of service by interfering with 
the operator’s ability to steer the camera gimbal.  

3.2.3.3.3 0x00 / 0x80: Gimbal Command 
This command controls the location in which the gimbal is pointed.  Pointing the gimbal away from the 
target can cause a denial of service. Random or erratic movement of the gimbal may cause the camera 
operator to assume a technical malfunction has occurred and recall the UAV. 

3.2.3.3.4 0x00 / 0x40: Gyroscope Zero 
This command sets the zero of the gyroscope on board the TASE gimbal. The gimbal documentation 
warns that the operator should not issue this command while the gimbal is in motion. Doing so may 
cause the gyroscope to be calibrated improperly, causing a degradation of service that would be difficult 
to fix mid-flight. This may force a recall of the UAV. The full extent to which this would affect 
performance has not yet been determined. 

3.2.3.3.5 0x28 / 0x00: User Warning Packet 
This packet is sent to the ViewPoint software instead of the gimbal. The software will display an error or 
warning message to the operator, which may be used to social engineer the operator into aborting the 
mission or taking other actions based on false information. 

3.2.4 Hardware Security Against Design and Manufacturing Attacks 

3.2.4.1 Introduction to Design and Manufacturing Attacks 

Many attacks, including those outlined in section 3.1, could be injected into a UAV via the supply chain 
or by an insider that could embed malicious hardware:  

 Designer adds malicious hardware functionality, which may not be detected in code review, IC 
inspection, and etc. 

 Malicious functionality may be added in the fabrication process and escape detection in IC 
inspection. 

 An attacker can reverse engineer unencrypted bitstreams to reveal the original design, or even 
modify the bitstream and add malicious functions. 

 If a bitstream is encrypted using encryption algorithms such as AES, an attacker may still be able 
to decrypt it by using power analysis, or physically hacking into the device and obtaining the 
private key which is used for encryption. 

 An inside attacker may replace or modify the hardware that is ready for deployment. 
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 Attacks maliciously modify data during conversion between protocols; e.g., converting RS-232 to 
Ethernet. 

 

For this project, we will focus on attacks against data protocol converters as potential attacks that 
maliciously modify data during protocol conversion not only serve as a vector for compromising an UAV, 
but also have the potential to compromise the Sentinel.  

3.2.4.2 High Level Attack Scenarios 

As outlined in sections 3.3 and 4, the proposed prototype Sentinel will need to convert information from 
RS-232 into Internet protocol (IP) packets. If an adversary could compromise this functionality, they 
could disable the protections afforded by the Sentinel. For example, assume that a Sentinel is 
monitoring a UAV’s autopilot system. Furthermore, assume that all of the data is sent to the Sentinel 
using the RS-232 protocol and is converted by the Sentinel to Ethernet to simplify the implementation of 
protection algorithms. Now let us assume that an adversary has embedded a Trojan horse into the 
hardware performing the conversion on the Sentinel that looks for a specific pattern in the RS-232 data 
stream to trigger a denial of service attack against the Sentinel. As discussed in sections 3.3 and 4, the 
protocol conversion will be implemented by running bare-metal applications on soft-cores implemented 
in a field-programmable gate array (FPGA).  

A FPGA was selected for its reconfigurability and flexibility that makes it favorable for the purpose of 
prototyping and concept-proving. In this proposal, the soft-cores for protocol conversion and all 
hardware-based protections will be implemented on FPGAs to verify their feasibility. In addition, FPGAs 
may also be suitable for the purpose of deployment, because of their short design-to-product time. 

The attack will be a kill switch embedded into the soft-core running on the FPGA. The attack will be 
triggered by a specific pattern embedded into the RS-232 data stream. The pattern must be long enough 
to avoid coinciding with normal data content. The triggering pattern will be sent from one of the RS-232 
data sources, including the autopilot and camera gimbal.  

Figure 23 shows the transmission of an 8-bit RS-232 data frame. The data being transmitted is the ASCII 
code for the letter K (0x4B), LSB first (Least Significant Bit). The frame starts with a start bit, a logical 0 
(represented by a high voltage in Figure 23), and ends with a stop bit, a logical 1 (represented by a low 
voltage).  
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Figure 23. RS-232 Data Transmission. 

When the triggering pattern is recognized, a compromised Universal Asynchronous 
Receiver/Transmitter (UART) interface will perform a kill switch attack by discarding all received data. 
This can be implemented by small changes in the UART receiver's logic. A more skilled and 
knowledgeable attacker may be able to insert his own data into the stream and accomplish more 
sophisticated attacks. 

3.3 Design and Development of the Super Secure, Smart Sentinel  

This section outlines the implementation of a prototype super secure smart Sentinel to protect a UAV 
against the attacks outlined in section 3.1. The prototype Sentinel is capable of monitoring the 
autopilots subsystems, detecting when those subsystems have been compromised (i.e., when they have 
been altered through malicious activity), alert the appropriate authorities, and taking appropriate 
actions to restore those subsystems to an uncompromised state. For this project, whenever the Sentinel 
detects malicious activity it will alert a specially designated cyber officer responsible for ensuring the 
integrity of the UAV. To ensure that such an action cannot be intercepted by an adversary, the UAV has 
been equipped with a highly secured back channel that can be used by the Sentinel to communicate 
critical security information and ensure that the cyber officer is able to both receive information 
regarding the true state of the UAV, as well as continue to issue commands in the event the main 
communications channel is compromised.  
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3.3.1 Sentinel Platform Development 

3.3.1.1 CloudShield 

The prototype system employs an off-the-shelf network security product called the CloudShield CS-2000 
content processing platform (here after referred to as CloudShield) (CloudShield is shown in Figure 24) 
as the Sentinel Security Platform. While CloudShield includes many of the desirable features of a 
programmable Sentinel, it does not meet the size, weight, and power requirements for airborne use. 
However, as seen in the analysis shown in Figure 25, it is a good environment for testing System-Aware 
security design patterns due to its capacity to perform deep packet inspections of data flowing in and 
out of the system, with negligible latency issues associated with the inspection process. The CloudShield 
also provides a platform which allows for redundancy within the network architecture itself. We used 
the CloudShield environment to develop the security design patterns supporting a ground-based 
prototype version (based on SiL simulation environment of the Piccolo system) and air-based prototype 
version (based HiL emulation environment) of the Sentinel which will be re-configured for actual flight in 
the next phase of this work. This permits the design team to better separate the design topics of cyber 
security effectiveness and the footprint requirements for flight by first developing effective algorithms 
and then converting the software to operate on new, flight-capable hardware. CloudShield supported 
the prototype development approach for the system Parameter Assurance and Data Consistency design 
patterns.  

 
Figure 24. CloudShield CS-2000 content processing platform with two deep packet inspection modules.  
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Figure 25. Comparison of CloudShield features to Sentinel requirements. 

In order to protect the Sentinel from becoming a potential target for cyber-attacks, the Sentinel design 
includes security features for the Sentinel itself. For the Phase 1 Sentinel these include the ability to 
perform HW/SW configuration hopping by leveraging the fact that the CloudShield includes a redundant 
processing module.  

To integrate the CloudShield into the HiL emulation environment, it was necessary to convert 
information from RS-232 into TCP/IP packets for processing. As seen in Figure 29, this was accomplished 
through the usage of SBCs (Single Board Computers)--specifically the Phidgets SBC2 and Raspberry Pi. In 
addition, these SBCs were used to connect the CloudShield to the secure back channel; an 802.11 
network in the initial prototype. Finally, the CloudShield system also provided the capability to monitor 
traffic between the PCC and the ground station. This enabled the initial prototype system to be able to 
monitor the integrity of the PCC, which, in turn, enabled for the classification of cyber-attacks that 
altered the UAV flight plan--i.e., directed the UAV to another waypoint--that originated from the ground 
from those that originated from the autopilot from those initiated by an operator/pilot. With this 
capability, an additional cyber-attack was created on the PCC. This cyber-attack performs the same 
functionality as the embedded attack; i.e., it would direct the UAV to fly to another waypoint. However, 
this attack would originate from a plugin maliciously installed on the PCC. Similar to the embedded 
Trojan horse, this plugin directs the aircraft to a different waypoint when the UAV enters a specific 
geographic region(s), as well as provides a channel that the adversary could use to direct the UAV to any 
available waypoint. For this attack, the input was done by opening a back channel that the attacker 
could remotely connect to in order to direct the UAV to a specific waypoint.  
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3.3.1.2 Raspberry Pi 

The Raspberry Pi, shown in Figure 26, is a 3.4” X 2.2” X 0.8” SBC which has gained popularity because of 
its affordability (approximately $35). This provides a relatively small, lightweight, and inexpensive option 
to use numerous platforms for snooping or corrupting serial data. The Raspberry Pi has a 700 MHz 
Armv7 based processor, and an SD card slot for memory storage. For our purposes, an 8 GB SD card is 
sufficient to host the Raspbian operating system, a version of Debian Linux specifically designed for the 
Raspberry Pi. The Raspberry Pi hosts C code written by the GTRI and the UVa which is responsible for 
bytewise decoding of information as it is passed to and from the gimbal. It is also possible for the 
Raspberry Pi to host the communications software development kit (SDK) provided by Cloud Cap. This 
allows for easily maintainable and more legible C code to be used to decode the same information. 

 

Figure 26. Raspberry Pi SBC. 

3.3.1.3 SiCore SHIELD Coprocessor 

During Phase 1, the focus of the work performed with SiCore has been to design a solution that 
leverages the secure platform provided by the SHIELD card as a delivery mechanism for Sentinel 
functionality. The result of those activities is a new version of the SHIELD card that serves as the central 
interface point between the system being protected, the UAV, and the Sentinel security design patterns 
that protect it. For the purposes of convenience for the demonstration of the Sentinel capabilities on 
this project, we choose to eliminate some of the hardened infrastructure for the SHIELD card and 
focused on adjusting the infrastructure of the card for two purposes:   

1. Enabling the types of interfaces that are required to interface with the Piccolo autopilot system.  
2. Protecting the data traversing the Sentinel architecture. 
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One of the goals in this effort was to look at delivering Sentinel functionality as a generic capability, 
while demonstrating that functionality on a specific system. To that end, we have decided to use IP as 
the standard protocol for Sentinel analysis functions. This particular system uses the serial RS-232 
protocol for the majority of its inter-component communications. So, the conversion of RS-232 to TCP/IP 
becomes an important function and a potential area of vulnerability for attack. The design effort in this 
phase and described here reflect our desire to standardize the protocol and to protect that conversion 
process. This design should apply equally to other types of interfaces on other systems.     

The actual implementation and fabrication of the SHIELD card that is being made to support the Sentinel 
for the UAV will be accomplished during Phase 2 of this project and will be outlined in section 4.2.2. That 
section will also detail the design decisions that were made during Phase 1. By using the SiCore SHIELD 
card, we will be adding additional potential security features to the Sentinel including protections of 
data bitstream, securing storage, securing the traffic within and outside the card and utilizing the OODA  
(Observe, Orient, Decide and Act) real-time controller methodology to aid in responding to events 
within the Sentinel security architecture.   

3.3.1.3.1 Original Card Overview 
The SHIELD Coprocessor was designed and developed by Sicore Technologies. It provides a secure 
enclave to store mission critical data and a secure framework to run mission critical applications. The 
coprocessor is protected by anti-tamper circuitry that includes a conductive mesh, temperature sensors, 
and voltage sensors. Tripping the anti-tamper circuitry causes all keys stored in the secure enclave to be 
zeroized. 

 

Figure 27. Block diagram of the Sicore SHIELD Coprocessor. 



Report No. SERC-2014-TR-036-3                                                                                                                             62 
 

3.3.1.3.1.1 PowerPC 460EXr processor 

The PPC460EXr processor runs SHIELD's secure framework called the Module Foundation Firmware 
(MFF). The MFF is stored in flash memory accessible to PPC. One sector of flash is write-locked through a 
hardware mechanism. The Module Foundation Firmware 

 Initializes hardware on the coprocessor 
 Ensures the integrity of programmable hardware on the coprocessor using the SHA256 

cryptographic checksum 
 Encrypts and Decrypts commands and flash memory with the AES algorithm (256 bit EBC) 
 Authenticates and verifies commands from an administrator using the RSA Algorithm (4096 bit) 
 Manages users and their applications 
 Loads and runs critical applications as specified by a user 

 
The PPC runs the cryptographic algorithms, but it gets the keys for the algorithms from the secure 
microcontroller through the FPGA. 

3.3.1.3.1.2 MAXQ1103 Secure Microcontroller 

The MAXQ1103 Secure Microcontroller acts as the secure enclave for the coprocessor's cryptographic 
keys. All critical software components are encrypted by keys stored in the MAXQ's zeroizable memory. 
In a tamper event, the keys are zeroized, making all data encrypted by them inaccessible. The MAXQ 
stores the hash of the Module Foundation Firmware as well and will not release keys to a corrupted 
MFF. 

Communication between the MAXQ1103 and PPC is enabled through a Cyclone II FPGA, which acts as a 
conduit between the two processors that must be masters of their buses. 

3.3.1.3.1.3 Additional Specifications 

 512MB DDR Memory 
 64GB Flash 
 2x Ethernet Ports 
 1x SATA Port 
 PCIE 4x 
 Cyclone II FPGA 
 Cyclone III FPGA 

3.3.2 Parameter-Based Attack Detection, Mitigation, and Restoration 

To defend against the parameter-based attack outlined in section 3.2.1, a prototype super secure smart 
Sentinel that is capable of monitoring the autopilots parameters, detecting when the integrity of those 
parameters have been violated (i.e., when they have been altered through malicious activity), alerting 
the appropriate authorities, and taking appropriate actions to restore the integrity of those parameters 
(i.e., restoring them to an authorized state) has been integrated into the HiL emulation environment 
(see section 2.1). As seen in Figure 28, when the parameter integrity of the autopilot has been violated 
the Sentinel will alert a specially designated cyber security officer of the integrity violation. Several key 
factors affected the decision to send the information to a specially designated cyber security officer: 
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 Pilot Workload: We did not want to increase the pilot’s workload further by making her 
responsible for deciding how best to respond to a cyber-security attack. 

 Desired Response: There may be more than one way to respond to a cyber-security attack 
against the UAV, including allowing the attack to continue in order to gather information about 
the attacker’s intention. A specially designated security officer would have the knowledge and 
experience necessary to work with the UAV flight crew to make those decisions. 

 Insider Attack: It is possible that the attack was the result of an insider, possibly even the pilot of 
the aircraft herself! A special cyber security officer can make facilitate our ability to address the 
attack without alerting the insider. 

 

Figure 28. Super secure smart Sentinel for protection with a designated cyber security officer. 

 
As the attack outlined in section 3.2.1 was focused on altering an UAV's flight plan by altering the UAV's 
waypoints, the initial prototype Sentinel will provide the cyber security officer with information 
whenever a waypoint change occurs. In addition, as the attack could originate from the Piccolo autopilot 
or the operator interface, the cyber security officer will also be provided with information regarding 
where the malicious attack originated. For the initial prototype, the cyber security officer can respond to 
a cyber-attack in one of two ways: 

1. Allow the attack to continue. 

 



Report No. SERC-2014-TR-036-3                                                                                                                             64 
 

2. Restore the original flight plan. 

In addition, to ensure that information sent by the Sentinel to the cyber security officer cannot be 
intercepted by an adversary, the UAV has been equipped with a highly secured back channel that can be 
used by the Sentinel to communicate critical security information and ensure that the operator is able to 
both receive information regarding the true state of the UAV as well as continue to issue commands in 
the event the main communications channel is compromised. As seen in Figure 29, for the initial 
prototype this security back channel is represented as a secure 802.11 network.  

The operator of the UAV may also make changes to the flight plan. As a result, the Sentinel must be 
capable of being able to distinguish changes authorized by the operator (i.e., legitimate) from changes 
made by the embedded Trojan horse (i.e., illegitimate). For the prototype Sentinel, this was 
accomplished through the usage of an open source key logging program installed on the machine 
hosting the operator/pilot interface (i.e., PCC) in order to monitor the operator's inputs and send this 
information to the cyber security officer’s work station. When the Sentinel protecting the autopilot 
detects a change in the flight plan, it will send an alert over the secure communications channel to the 
cyber security officer. This alert will then be cross-referenced against the inputs made by the operator 
for a corresponding change in flight plan. If an operator input for changing the waypoint is found, the 
cyber security officer is notified of an operator change in waypoints. If no operator input directing the 
UAV to another waypoint is found, then the cyber security officer is informed that a possible embedded 
attack has led to the UAV being directed to another waypoint. The cyber security officer is then 
presented with a list of options, which in the prototype only includes the option to restore the UAV to 
the original flight plan. If the cyber security officer decides to restore the aircrafts original flight plan, a 
message will be sent to the Sentinel over the secure communications channel and the Sentinel will 
restore the original flight plan, and alert the cyber security officer that the flight plan has been restored. 

For the initial prototype system the CloudShield was selected to provide the Sentinel functionality for 
monitoring the Piccolo autopilot system. The CloudShield was selected as the prototype Sentinel to 
protect against parameter-based attacks for its rapid reconfigurability and its deep packet inspection 
capabilities. See section 3.3.1.1 for a more detailed description of the CloudShield platform. Figure 29 
shows the architecture used to protect the Piccolo autopilot. 

As discussed in section XXX, an interface for the cyber commander was for the created bench-top 
prototype that provided two functions: 

1. The capability to receive alerts about (un)authorized changed to the flight plan. 
2. The ability to restore the original flight plan when a cyber attack has been detected. 

 
While this has been valuable for rapid prototyping, an interface for the cyber commander with a more 
robust feature set is desirable: 

* Capability to display position of multiple aircraft in near real-time to the cyber commander. 
* Capacity to log information to facilitate analysis, defense, restoration, and forensics. 
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* Ability to support human-in-the-loop experimentation. 
* Developed in an environment to enhance its portability. 

As a first step, we have begun the process of migrating the current cyber commander functionality to 
LAMP (Linux, Apache web server, MySQL, Python) stack. This would provide a structured way to store, 
retrieve, and analyze information, facilitate portability, and enable us to leverage COTS mapping 
technology. Currently we have migrated the functionality into a web environment using Django; this 
includes the capability to show multiple aircraft to the cyber commander using the Google Maps API. 
Furthermore, cyber detections and a history of each aircraft's flight can be stored for analysis. 

 
Figure 29. Sentinel (CloudShield) using SBC to convert data from RS-232 to TCP/IP. 

As outlined in section 3.2.1, a parameter-based attack may also be launched from a compromised 
operator interface (i.e., PCC). To protect against this attack an additional Sentinel was incorporated to 
monitor the data flowing into and out of the PCC. For the prototype Sentinel, the CloudShield was also 
selected. As the number of CloudShield CS-2000 units available was limited to one, the same 
CloudShield served as the Sentinel for the PCC as for the Piccolo autopilot. The final architecture is 
shown in Figure 30. 
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Figure 30. CloudShield Sentinel monitors Piccolo Command Center interface for integrity violations. 

As a first step towards transitioning the work developed on the bench-top environment to a flight-ready 
Sentinel shown in Figure 31, our team began by migrating the functionality of the CloudShield to single 
compute boards (specifically the Raspberry Pi). In addition, the bench-top prototype utilized an 802.11 
network to provide a secure communications backchannel for communicating security related 
information and commands from the cyber commander to the Sentinel protecting the Piccolo autopilot 
system. However, in order to ensure flight safety, all security communications will be transmitted using 
the Piccolo's onboard radio. Thus, part of the initial migration includes modifications to send and receive 
security information and commands related to Sentinel over the Piccolo's onboard radio. An interim 
step which utilizes a separate radio used for sensor payload services may be utilized as the full 
communications mechanism through the Piccolo’s onboard radio is developed for flight demonstrations. 

Figure 31 shows the state of our miniaturization efforts. This includes: 

 The partial migration of the Sentinel's functionality from the CloudShield to the single 
compute boards. 



Report No. SERC-2014-TR-036-3                                                                                                                             67 
 

 

Figure 31 – Early Prototype of Flight-Ready Sentinel 

 Migration of the onboard status monitoring for (un)authorized changes to the UAVs 
flight plan. 

 Migration of the ground station status monitoring for (un)authorized changes to the 
UAVs flight plan. 

 Sentinel used for protecting the Piccolo autopilot sends security information through 
the Piccolo's radio to the Sentinel protecting the ground stations that forwards that 
information to the cyber commander for analysis. To keep this information segregated 
from the information sent for normal this is done using the PAYLOAD_STREAM provided 
by the Piccolo autopilot for sending user defined information. 

 Communication from the ground station Sentinel to the cyber commander has been 
changed from wired Ethernet to an 802.11 (b/g/n) network. 

 
Future miniaturization efforts will include restoration capabilities (Section XXX) and the security 
measures meant to enhance the security of Sentinel. Also, to allow the migration of Sentinel 
functionality from the CloudShield and the development of the Sentinel SHIELD card to occur in parallel, 
the current state of miniaturization uses a single compute board to provide conversion from RS-232 to 
TCP/IP. 

3.3.3 GPS System Attack Detection and Mitigation  

Before we can describe our Phase 1 detection and attack mitigation methodologies for the GPS system, 
we must first explain the proposed architecture of the diversely redundant navigation components in 
the Sentinel. Next, we describe the analytical tools used to improve the system’s resiliency under an 
attack. We explain how these components are implemented and how these components work together. 
Third, we outline the recovery procedures built upon the analytical tools. Finally, we list the benefits of 
such an approach—including the speediness of recovery compared to traditional methods and capturing 
information on the adversarial strategy and motive. 
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We propose an architecture of several stand-alone navigation systems (i.e., GPS INS, and the Piccolo 
navigation system). We plan on housing these extra redundant navigation systems in the Sentinel. Each 
of these components carries diverging algorithms for navigation. The de facto Piccolo II navigation 
system uses an INS and a GPS in tandem to give the autopilot the estimated location of the aircraft. The 
strap-on INS calculates the aircraft location based on accumulated data from motion sensors 
(accelerometers) and rotation sensors (gyroscopes) to estimate the aircraft’s position. The GPS uses 
time signals from multiple GPS satellites to triangulate an aircraft’s location.  

To supplement the de facto navigation system of the Piccolo II, we decided to add a secondary INS and 
GPS units. These units would be supplied by a vendor different than those embedded into the Piccolo 
and would connect directly to the Sentinel. The redundant INS should be able to produce the same sort 
of procedures compared to the Piccolo II’s internal INS. We will use these components to verify the 
behavior of each component to see if one or more of these components are performing anomalously. 

In order for an adversary to successfully exploit a UAV navigation system, she must be able to 
simultaneously manipulate all sensory information. Diverse redundant components—like the ones 
previously described—have the potential to increase the difficulty and cost (time, resources, and labor) 
to the adversary. 

Frame of Discernment 

The purpose of the Frame of Discernment (FOD) is to enumerate the exhaustive and mutually exclusive 
scenarios. For our purposes, Table 10 shows the FOD of our UAV navigation architecture. The columns 
represent each stand-alone component and the rows enumerate the possible    events. The red cell 
indicates an attack on its indicated component, while a yellow cell indicates a proper functioning 
component. For example, we define Event 1 as the event where all components are reliable and 
functioning as expected. Event 2, in contrast, is defined as the event where the Piccolo II is manipulated. 
The Frame of Discernment organizes the unobservable and inscrutable events into one in which we 
could compute and compare each individual event’s likelihood of taking place given the observable live 
data streaming from these components. 
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Table 10. Frame of Discernment for Navigation Architecture. 

Similarity Measurement 

In this section, we tie in the concept of Similarity Measurement procedures with the Frame of 
Discernment. Similarity measurements quantify the compactness and intimacy of the streaming sensor 
readings against another sensor. Under this similarity procedure, we should be able to adapt to the 
variability of error the sensor measurement with one another (See Appendix: Proposed Mass Function 
for FOD). 

Let us define Gaussian random variables   ,   ,    to represent the values of the Piccolo navigation 
system, INS, and GPS respectively at time  . We use these random variables as elements to measure the 
mass function for each the events in the FOD. As a candidate mass function, we choose for Event 1: 
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       (   )
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The mass function will decrease as one of these random variables deviates from one another. The 
maximum value of      is 1 (for the case      ), and the minimum value is 0. We develop a list for 
candidate mass function for each event in the FOD. To examine the mass functions for the rest of the 
events in the FOD, refer to appendix 5.1 at the end of this report. 

Analytical Equivalent Pairings 

There exists analytical pairings in the FOD in which events are indiscernible with each other. These 
events share an identical mass function. For example, Event 2 and Event 7 is an analytical pairing in 
which we cannot discern if the Piccolo II’s navigation system is, or simultaneously both the INS and GPS, 
are attacked. Although we cannot distinguish which of the event is occurring, we can palliate such 
occurrences by adding additional   redundant navigation components to the system; thus extending the 
FOD from    to      events. In effect, the mass functions have to adapt to the additional    
components. 

For example, if    , adding an barometric altimeter (ALT) and a location estimator (EST), then the 
FOD table becomes: 

EVENT P INS2 DGPS
1 0 0 0
2 1 0 0
3 0 1 0
4 0 0 1
5 1 1 0
6 1 0 1
7 0 1 1
8 1 1 1
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Table 11. FOD with Altimeter and Location Estimator. 

Using 5 navigation components, to completely control an aircraft, the adversary needs to manipulate 3 
components simultaneously—increasing the difficulty of success. By increasing the number of 
components to 5 and augmenting the elements of the FOD to       events, we increase the difficulty 
of success for the adversary by forcing the adversary to capture 3 components. Even if the adversary 
successfully infiltrates the majority of the components, UAV managers have enough evidence to flag it 
as a major attack and shut down the flight mission. 

EVENT P INS2 DGPS ALT EST
1 0 0 0 0 0
2 1 0 0 0 0
3 0 1 0 0 0
4 0 0 1 0 0
5 0 0 0 1 0
6 1 1 0 0 0
7 1 0 1 0 0
8 1 0 0 1 0
9 0 1 1 0 0
10 0 1 0 1 0
11 0 0 1 1 0
12 1 1 0 1 0
13 1 0 1 1 0
14 0 1 1 1 0
15 1 1 1 0 0
16 1 1 1 1 0
17 0 0 0 0 1
18 1 0 0 0 1
19 0 1 0 0 1
20 0 0 1 0 1
21 0 0 0 1 1
22 1 1 0 0 1
23 1 0 1 0 1
24 1 0 0 1 1
25 0 1 1 0 1
26 0 1 0 1 1
27 0 0 1 1 1
28 1 1 0 1 1
29 1 0 1 1 1
30 0 1 1 1 1
31 1 1 1 0 1
32 1 1 1 1 1



Report No. SERC-2014-TR-036-3                                                                                                                             71 
 

Sequential Change Detection 

We propose a sliding window of size   to estimate the mass function of a system. A simple average 
procedure would be a reasonable and effective method for estimating the mass functions. However, it is 
possible to use a Likelihood Ratio (GLR) algorithm to estimate the mass functions provided that we have 
a variance matrix   for each mass function. We can find   using empirical tests in normal flight i.e., flight 
without attacks. 

The estimate then is 

 ̂ ( )  
    (  

     )

     
 

Where for each   in the FOD and   is the vector of ones with size equal to that of   
  and 

  
  

 

   
∑     

 

     

 

The event with the greatest  ̂ ( ) is the event most likely occurring. Choosing a larger   would slow 
down the identification of      and a narrow   would result in a noisier      for each element   in the 
FOD. 

As our recovery protocol, we create predetermined procedures for each element in the FOD 

Suppose we have updated estimated mass functions with a sliding window of size   for each time  . The 
event in the FOD with the highest mass function signifies the event with the highest likelihood of taking 
place. For each event, we map a predetermined navigation procedure. 

 

Table 12. Navigation procedures. 

For 5 components, the proposed procedure becomes 

EVENT P INS2 DGPS VERSION PROCEDURE
1 0 0 0 1 y(t) = P
2 1 0 0 2 y(t) = INS2,DGPS
3 0 1 0 3 y(t) = P
4 0 0 1 4 y(t) = P
5 1 1 0 5 y(t) = Failure
6 1 0 1 6 y(t) = Failure
7 0 1 1 7 y(t) = Failure
8 1 1 1 8 y(t) = Failure
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Table 13. Procedures for five navigation components. 

 

If we have 5 components, we force the attacker to be capable of manipulating 3 components for her to 
be successful. 

This approach improves the resiliency and reliability of the Navigation System and increases the 

difficulty to attain success and provide the managers information on the adversarial strategy and motive. 

EVENT P INS2 DGPS ALT EST VERSION PROCEDURE
1 0 0 0 0 0 1 y(t) = P
2 1 0 0 0 0 2 y(t) = INS2,DGPS
3 0 1 0 0 0 3 y(t) = P
4 0 0 1 0 0 4 y(t) = P
5 0 0 0 1 0 5 y(t) = P
6 1 1 0 0 0 6 y(t) = DGPS
7 1 0 1 0 0 7 y(t) = INS2
8 1 0 0 1 0 8 y(t) = INS2,DGPS
9 0 1 1 0 0 9 y(t) = P
10 0 1 0 1 0 10 y(t) = P
11 0 0 1 1 0 11 y(t) = P
12 1 1 0 1 0 12 y(t) = Failure
13 1 0 1 1 0 13 y(t) = Failure
14 0 1 1 1 0 14 y(t) = Failure
15 1 1 1 0 0 15 y(t) = Failure
16 1 1 1 1 0 16 y(t) = Failure
17 0 0 0 0 1 17 y(t) = P
18 1 0 0 0 1 18 y(t) = INS2,DGPS
19 0 1 0 0 1 19 y(t) = P
20 0 0 1 0 1 20 y(t) = P
21 0 0 0 1 1 21 y(t) = P
22 1 1 0 0 1 22 y(t) = Failure
23 1 0 1 0 1 23 y(t) = Failure
24 1 0 0 1 1 24 y(t) = Failure
25 0 1 1 0 1 25 y(t) = Failure
26 0 1 0 1 1 26 y(t) = Failure
27 0 0 1 1 1 27 y(t) = Failure
28 1 1 0 1 1 28 y(t) = Failure
29 1 0 1 1 1 29 y(t) = Failure
30 0 1 1 1 1 30 y(t) = Failure
31 1 1 1 0 1 31 y(t) = Failure
32 1 1 1 1 1 32 y(t) = Failure
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Using this architecture with the proposed protocol, we are able to increase the difficulty of adversarial 
success. The adversary is required to successfully manipulate the majority of the components. The 
Frame of Discernment enables the user to compare events based on mass functions and detect which 
event has the maximum likelihood of occurring. The FOD also organizes which recovery procedure to 
choose in order to isolate the component under attack. 

Also, using similarity measurements, we improve the recovery speed compared to simple threshold 
procedures—which gives adversaries room to manipulate the aircraft, and give false negative and false 
positive in noisy systems if the threshold values are incorrectly provided.  

By allowing the adversary to freely manipulate the sensors without shutting down the flight mission, we 
can gather information relating to the adversarial attack strategy and adversarial motive—which may be 
valuable to managers and strategists. This is another important feature that the proposed procedure 
provides which threshold methods do not immediately and directly deliver. 

For Phase 2, we will apply the methods described above to enhance the security of the UAV flight 
camera metadata  
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Figure 32. Architecture for camera system. 

Figure 32 summarizes the proposed defense architecture for the flight camera system of the UAV. The 
box encapsulating the Piccolo II, Sentinel, and camera system modules carried on the UAV. The camera 
outputs two types of streaming signals: video and metadata associated with the video stream. The 
metadata includes GPS coordinates of the streaming files which an adversary could manipulate via 
corrupting CAM-GPS system in the camera. 

We propose to use the defense procedures for the navigation system for the use of securing the 
metadata. We will continue to use diverse, redundant navigation components—GPS and INS housed in 
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the Sentinel, and the GPS housed in the camera system. Also available for use is the GPS and INS 
navigation system for the Piccolo II.  

Table 14 below enumerates the events in the FOD. 

 

Table 14. FOD for camera system. 

We will continue to use the same type of mass functions for each of the events in the FOD. This time, 
however, we have four components. Let  ,  ,  ,   be Gaussian random variables representing the 
navigation measurements for each of the sensors. Then the mass function for Event 1 where all 
components are reliable is 

    (                   )

 [
    (   )

       (   )
]  [

    (   )

       (   )
]  [

    (   )

       (   )
]  [

    (   )

       (   )
]

 [
    (   )

       (   )
]  [

    (   )

       (   )
] 

Again, we use the recovery procedures outlined in Phase 1 to determine which signals the Sentinel 
should be allowed to send. Below is the recovery procedures linked with each event in the FOD. 

EVENT P INS2 DGPS CAM-GPS
1 0 0 0 0
2 1 0 0 0
3 0 1 0 0
4 0 0 1 0
5 0 0 0 1
6 1 1 0 0
7 1 0 1 0
8 1 0 0 1
9 0 1 1 0
10 0 1 0 1
11 0 0 1 1
12 1 1 0 1
13 1 0 1 1
14 0 1 1 1
15 1 1 1 0
16 1 1 1 1
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Table 15. Procedures for camera system. 

Experimental Design for Testing Detections in Multiple GPS /INS Signal Configurations 

We have designed and initiated tests of a series of ground-based experiments to investigate methods 
for detecting deviations and anomalous sensors, and potential attacks on GPS and INS sensors on the 
Piccolo and the external GPS sensors that will be introduced as part of the Phase 2 Sentinel 
implementation. Adversaries can target these sensors by manipulating their measurement outputs and 
relay falsified data that are ultimately fed back to their corresponding controllers. 

Methods 

Diverse Redundant Components. We are experimenting with an architecture of several stand-alone 
navigation systems. A diverse redundant component system is, in this case, a system comprised of 
multiple components with the same purpose. The aim of using multiple components is to avoid 
downtime after a successful attack and force the attacker to manipulate multiple components. In our 
proposed phase 2 design, we will equip the aircraft with the principle navigation system (Piccolo II 
Autopilot) and two redundant components (a GPS and an INS). 

We design these components to work in tandem such that if one component is compromised the 
redundant components could succeed in restoring the system and avoid downtimes. 

Redundant components also increase the difficulty of success. In order for an adversary to successfully 
attack a diverse redundant system increases the difficulty of a successful attack by forcing an attacker to 
manipulate multiple components simultaneously. Otherwise, if the adversaries control only one or a few 
of these sensors, managers would be able to detect the intrusion and isolate the problem with relative 

EVENT P INS2 DGPS CAM-GPS VERSION PROCEDURE
1 0 0 0 0 1 y(t) = CAM-GPS
2 1 0 0 0 2 y(t) = CAM-GPS
3 0 1 0 0 3 y(t) = CAM-GPS
4 0 0 1 0 4 y(t) = CAM-GPS
5 0 0 0 1 5 y(t) = DGPS
6 1 1 0 0 6 y(t) = DGPS
7 1 0 1 0 7 y(t) = CAM-GPS
8 1 0 0 1 8 y(t) = DGPS
9 0 1 1 0 9 y(t) = Failure
10 0 1 0 1 10 y(t) = Failure
11 0 0 1 1 11 y(t) = Failure
12 1 1 0 1 12 y(t) = Failure
13 1 0 1 1 13 y(t) = Failure
14 0 1 1 1 14 y(t) = Failure
15 1 1 1 0 15 y(t) = Failure
16 1 1 1 1 16 y(t) = Failure
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ease. Component architecture with multiple components increases the cost of success for the 
adversaries. 

Frame of Discernment. Suppose we have   redundant sensor components, and each component can 
hold one of two mutually exclusive characteristic:            OR              . Let   be 
the universal set: the set representing all possible states of a system under consideration. The power set 
   is all the set of all subsets of  , including the empty set  .  

Using a specific example, suppose we have     sensors           . The system has      mutually 
exclusive proposition. We use similarity measurements to discern which proposition is the most likely 
occurring. 

 
Figure 33 Frame of Discernment (FOD) of 3 diverse redundant sensors for UAV navigation 

 

For the UAV, we install 3 redundant components (See Figure 33), and each component can hold one of 
two mutually exclusive characteristic:        = 0 OR           = 1. In Figure 33, Event 1 indicates that 
all components are functioning reliably; while Event 2 indicates that all components but the Piccolo II 
navigation system is functioning reliably. 

Subjective Logic. Since we cannot directly observe whether or not a sensor is faulty or reputable, we rely 
on the evidence taken from the   sensors. We can apply methods in Subjective Logic. We apply a 
detection scheme based on a subjective binary logic framework. A fundamental aspect of security is that 
nobody can ever determine with absolute certainty whether a proposition about a component is true or 
false. We do not know whether or not a component is attacked or it could merely be a systematic fault. 
We can only make inferences based on the components’ observable behavior.  

An opinion is denoted by    where    is the proposition in the FOD to which the opinion applies. We 
assess each proposition by four characteristics 1) belief that the specified proposition is true, 2) belief 
that the specified proposition is false, 3) amount of uncommitted belief (uncertainty), 4) a priori 
probability of the event happening. 

Let   be a proposition. A binomial opinion about the truth of    is the ordered quadruple    
(       ) where: 

1.        : belief that the specified proposition is true; an example of absolute opinion, 
2.        : belief that the specified proposition is false; another example of absolute opinion, 
3.        : amount of uncommitted belief; uncertainty 
4.        : priori probability in the absence of evidence 

 

EVENT P INS2 DGPS
1 0 0 0
2 1 0 0
3 0 1 0
4 0 0 1
5 1 1 0
6 1 0 1
7 0 1 1
8 1 1 1
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These components satisfy the following properties: 

        

An opinion where     is indicating that the binary logic is true while     indicates that the binary 
logic is false. And       indicates total uncertainty. 

We tie in the concept of similarity measurement procedures with each proposition in the FOD. There are 
families of viable similarity measurements. In this analysis, we chose to use the general   , “City Block,” 
similarity measurement. For our purposes, similarity measurements quantify the compactness and 
intimacy of the streaming sensor readings against another sensor. Under this similarity procedure, we 
should be able to adapt to the variability of error the diverse sensor measurement with one another. 

Define Gaussian random variables   ,   ,    represent a multivariate values of the 3 sensory components 
at time  . We use these random variables as elements to measure the mass function for each the events 
in the FOD. As a candidate mass function, we choose the belief function,  , for Proposition 1: 
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| |
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And the disbelief function for Proposition 1: 
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We allow the cyber security operators to modify    based on the current mission. The cyber security 

operators provide us with two parameters: 1) the maximum acceptable deviation and 2) the minimum 

unacceptable deviation. From there, we can deduce the values of    . We believe that providing the 

operators with     this gives the operator more control for the allowable deviation. 

The belief functions will also take into account the geometry of the earth. We will modify the belief 
function to more accurately reflect the elliptical/spherical shape of the Earth. The idea is that 1 degree 
difference in longitude near the equator is much farther than the 1 degree difference in longitude near 
the poles. We will borrow ideas from non-Euclidean geometry to find the distance between two 
coordinates. See Section 5.2 for example code for this calculation. 

Different navigation components have different sampling rates which require us to interpolate data 
from and between two sequential data points. In this project we use a linear interpolation technique as 
we need to avoid filtering signals using the data coming from alternative components. See Section 5.2 
for example code for this calculation. 

Flight Simulation Experiment 

To simulate the detection abilities of the algorithm, we inject the autopilot with false coordinates. Below 
is the standard interaction of the autopilot and the simulator. The actuating commands is fed into the 
Simulator which feeds back to the autopilot the estimated coordinates during a flight. The simulation 
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system is configured with an additional “Man-in-the-middle” module which enables us to alter the true 
coordinates the simulator feeds into the Navigation System.  

Piccolo II

Auto Pilot

Navigation System
(GPS/INS)

Simulator

ORIGINAL UNSECURE 
SYSTEM

Man-in-the-middle
Module

(PC w/ LabView)

 

3.3.3.1 Fig. 2 Implementation of the Man-in-the-middle Module within the simulation environment 

During the Flight Simulation Experiment, we will gradually change the coordinates of the aircraft and 
collect the coordinates. We test 4 different longitude deviation rates: 

1. 0 micro second degree deviation per 1 second 
2. 4 micro second degree deviation per 1 second 
3. 8 micro second degree deviation per 1 second 
4. 16 micro second degree deviation per 1 second 

During this experiment we would like to see how much an adversary would deviate the aircraft without 
detection.  

Ground-based Field Experiment 

A diversely, redundant navigation sensors is a key component to the architecture. For our supplemental 
navigation device we decided on the Adafruit Ultimate GPS (See Appendix for Specifications and 
Properties). To test the algorithm, we designed a field experiment which we used two ground-based 
vehicles to gradually deviate from one another. We recorded GPS output using an attached Linux based 
EEE PC netbook. 

We compare output location from two Adafruit GPSs to that of the Piccolo II GPS. We drew Latitude and 
Longitude information using a Piccolo Command Center plug-in from the GPS_HEALTH packet, which 
updates every six seconds.  

NOTE: Initial testing was discarded due to the noise coming from the INS within the 
TELEMETRY_LO_RES. Testing the GPS_HEALTH data will commence shortly. 
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Figure 34 – Ground-based Navigation Experimental Environment 

We have designed the field experiment to have 5 different types of deviations: 

1. No deviation—the two vehicles’ paths are equal 
2. “Small” deviation rate 
3. “Medium” deviation rate 
4. “Large” deviation rate 
5. “Instant” deviation rate 

Results of these tests will be used to test the fidelity, judge the effects of noise and timing issues related 
to this approach, and to fine-tune the models in their associated sensitivities for detecting deviations 
and classifying the detections as attacks that will be used in the in-flight versions of these models.  

3.3.4 Gimbal Attack Detection and Mitigation 

Degradation and denial of service attacks are possible because the gimbal trusts the sender of any 
commands that it receives. To prevent this type of attack, the system should be able to evaluate of any 
command it receives to determine its validity. 

Changes cannot be implemented in how the ViewPoint software issues commands or how the gimbal 
responds to them because they are commercial products and the source code is not available. However, 
it is possible to place a piece of in-line hardware or software on the UAV that receives the command 
packet before the gimbal and can decide whether or not to forward it along to the gimbal based on 
mission conditions. 

Adafruit Ultimate GPS 

ASUS EEE PC—Linux 
Configuration 

GPS Reciever 
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Several methods can be used to make decisions on the validity of gimbal commands. One method to 
help catch unauthorized commands is to implement an authentication scheme, possibly by appending a 
cryptographic signature to messages sent from the ViewPoint software to the gimbal. However, this will 
not protect the gimbal system from the case in which a malicious agent has compromised the PCC. 
Depending on the degree of compromise, the malicious agent could still be able to send messages the 
UAV would consider authorized.  

In a similar manner, providing additional authentication to commands capable of causing damaging 
effects would be helpful but not sufficient. An attacker who has not fully compromised PCC to the point 
of recovering the cryptographic key would be halted by such a defense, but further compromises may 
render this ineffective. 

To protect from compromises of PCC the UAV should be able to judge the legitimacy of commands. To 
do this a run-time analysis can be performed to determine whether or not executing a command makes 
logical sense. For example, if the system received a command to retract the gimbal while it is in a pre-
specified area of interest an intelligent decision would be to not immediately trust the command and 
attempt to verify its authenticity. In addition, authorized operators should be able to issue whatever 
commands they need, so there must be an override capability to verify that traditionally illogical 
commands are in fact legitimate.  

3.3.4.1.1 Using Mission Context to Detect Gimbal Attacks 
Cloud Cap software provides flexibility for a wide variety of mission operations, which makes the system 
susceptible to inside attacks involving seemingly valid commands that interfere with user operations. To 
prevent these, systematic rules based on mission context have been developed to limit when and where 
certain commands should be considered authentic. 

The following algorithms use structures and methods from the software development kit provided by 
Cloud Cap for ViewPoint plugin creation and are aimed toward detecting the attacks found most feasible 
from section 3.2.3.3. Despite the following algorithm being written using an SDK, one could decode the 
information bytewise from the message streams and follow the same algorithms. 

3.3.4.1.1.1 Packet Detection 

The method LookForGimbalPacketInQueue() searches through a queue of packets and determines if a 
packet of gimbal type (i.e., a gimbal packet) is present in the message stream. It then stores this packet 
in a predefined buffer. The packet is then inspected to see if the packet type is a gimbal command. All of 
the vulnerabilities in section 3.2.3 fall into this type with the exception of the user warning packet.  

3.3.4.1.1.2 Retract/Deploy Command Detection 

The gimbal packets are further inspected to determine if the packet group is that of Gimbal command 

and control group. If so, then it is passed to the method that checks if it can be decoded into a 
retract/deploy struct pointer. If the method returns false the packet is ignored and the monitoring of the 
stream for packets continues. If the method returns true then the stream is decoded into information 
determining whether the gimbal is being commanded to either retract or deploy.  
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Under the assumptions that normal operations would entail the retraction and deployment of the 
gimbal directly after take-off and directly before landing, the velocity of the gimbal relative to Earth and 
the distance of the gimbal from the ground station should be relevant criteria to determine  whether the 
gimbal retract/deploy command appears to be authentic. 

The aircraft velocity and position can be determined by monitoring the gimbal telemetry stream for 
packets of type HOST_GPS_DATA_GIMBAL_PKTTYPE and of group 
GIMBAL_POSITION_INFORMATION_GROUP. These telemetry packets can be decoded to give the GPS 
position and velocity of the aircraft. These two pieces of information can be used to determine what 
phase of flight the aircraft is in. If the phase is take-off or approach/landing, then the retract/deploy 
command is considered authentic. If the aircraft is in cruise or loiter mode then the retract/deploy 
command should be considered malicious. 

3.3.4.1.1.3 Erratic Gimbal Command Detection 
To protect against a Gimbal Command attack it is assumed that during normal operations the gimbal 
should never be slewed to view a location above the horizon. Similar to the process in section 
3.3.4.1.1.2, the telemetry stream is checked for gimbal packets in the queue. The method 
DecodeGimbalCmdPacket() is used to give an elevation angle of the gimbal. Gathering the GPS 
information using the same algorithm in section 3.3.4.1.1.1, the aircraft altitude is determined. If the 
aircraft altitude is higher than the altitude at which the gimbal is pointed, then the command is 
authentic. If the gimbal is pointed at a higher altitude than the aircraft then the command is considered 
malicious and the user can be warned via a message sent through a payload message stream using the 
autopilot command and control link. 

Further constraints can be placed on the gimbal angles by limiting the gimbal orientation based on 
mission CONOPS. For example, if the UAV mission is to loiter overhead a specified target then the gimbal 
field of view should never extend outside the orbit of the aircraft.   

A simple diagram illustrates the application of mission context to limit the functionality of the gimbal. 

With this limited functionality, if the gimbal deviates from its intended use then a warning message will 

be emitted to the Cyber Commander. Using the image centroid location, and intercepting the vehicle 

center of orbit position, a comparison will be done to ensure that the tracked object is within the orbit’s 

radius. This makes sense if the mission context is to circle overhead an object for recon purposes. 
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In steady, level flight the relationship between the aircraft’s bank angle (a), velocity (Va), and turn radius 

(Ra) can be expressed as  

   
  

 

      (  )
 

where g is the gravity force. 

The function defined as G relates the latitude and longitude of the gimbal and orbit centroid to a distance. 

This is done using an ellipsoidal Earth (WGS-84) model and calculating the distances using Vincenty’s 

formulae. Preliminary code has been written to implement these calculations. 

An approximation of this WGS84 model using the haversine formula for a spherical Earth is represented 

here: 
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Where φ1 and φ2 are the latitudes of point one and two, and λ1 and λ2 are the longitudes of point one 
and two. R is the radius of the spherical Earth approximation. Soon this great circle distance 
computation will be replaced by the WGS-84 model using an ellipsoidal Earth. 

 

3.3.5 Hardware Security Against Design and Manufacturing Attacks 

3.3.5.1 Solutions and Detection/Restoration Mechanisms 

Detection of malicious or faulty operations is usually performed by adding hardware redundancy, such 
as dual modular redundancy (DMR) and triple modular redundancy (TMR). With DMR recovery can be 
done by periodically storing circuit states into checkpoints. When a mismatch between the two copies is 
detected the latest checkpoint is used to restore the system to a correct state. With TMR a fault can be 
masked by using a majority vote. The output of the voter can also be fed back to all three copies so that 
they all keep the correct value. 

In addition, hardware redundancy can provide fault tolerance. Radiation-induced single event upset 
(SEU) can cause transient errors in electronic systems, and the error rate increases as the altitude rises. 
As technology node shrinks it is more and more likely that an SEU causes multiple bit errors in a memory 
cell. Therefore it is important for aircraft, such as UAVs, to be fault tolerant. When redundancy is applied 
to a UAV for the purpose of security it also brings the ability of fault tolerance for free. 

Assuming that a processor could be compromised by supply chain attacks, it is insecure to use three 
identical processors from the same source. Thus, heterogeneous cores from different manufacturers are 
considered. Processors with different instruction set architectures (ISA) are an option, but different ISAs 
may result in different instruction and/or memory access orders, which significantly increase the 
difficulty of synchronization. Unlike software synchronization, which can be done by inserting 
synchronization points into the code, hardware synchronization can only be done by monitoring register 
and memory values. Therefore heterogeneous processors with the same ISA are more favorable. The 
processors can have different configurations such as speed, clock signal, cache size, and etc.  

Similar to synchronization, detection and restoration of deviated operations also depend on monitoring 
register and memory values. The assumption is that if multiple processors perform exactly the same 
operations (e.g., write the same data to memory) on an instruction-by-instruction basis then they are 
considered to have the same behavior.  

3.3.5.2 Detection/restoration of hardware Trojans 

Phase 1 focused on preliminary work to investigate the capability of TMR as a hardware security 
technique. Figure 35 shows a block diagram of a TMR design with three cores; each core has its own 
clock signal, cache and memory.  

In the test design, the input signal is a 7-bit general-purpose input/output (GPIO) input which is 
connected to the switches on the FPGA board. The software run by the cores inverts the 7-bit input and 
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sends the inverted value to GPIO output. Since the three cores run with different clock frequencies, 
synchronization is required.  

 

Figure 35. Block diagram of a FPGA configured to provide detection and recovery with TMR. 

Synchronization is implemented by adding a first-in-first-out (FIFO) buffer to each of the processor. The 
data written into each cache is also written into the corresponding FIFO simultaneously. When a FIFO is 
empty its corresponding processor runs as normal. When a FIFO is not empty (i.e., a value has been 
written into the cache) the processor halts and waits for the same instruction to be executed on other 
processors. When all three FIFOs have a value a read operation is performed and the values are sent to a 
voter. If the values do not agree then an LED is asserted to indicate the disagreement. Another voter is 
used to determine the GPIO output which is connected to the LEDs on the FPGA board. 

In Figure 35, an example hardware Trojan is inserted into core 0. If the 7-bit GPIO input is 0x0F then the 
data written into the cache is 0x7F; i.e., it has been tampered with. In all the other cases, the cache 
always gets the correct value. This mimics a piece of malicious hardware that is triggered by a specific 
input. When the Trojan is activated it modifies data and results in incorrect output. With the TMR design 
shown in Figure 35 this malicious operation can be detected and masked, assuming the other two 
processors are operating correctly.  

Figure 36 shows the operation of the TMR design. The lower 7-bit LEDs are GPIO input, which is 0x0F, 
and therefore triggers the hardware Trojan. In this situation, the data written into cache 0 is changed to 
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0x7F, and the output of core 0 is therefore 0x00 (0x7F inverted). But the TMR design is able to give the 
correct output, 0x70, in spite of the malicious operation in core 0. Meanwhile, the highest LED is 
asserted to indicate that a disagreement is observed among the three processors. 

 

Figure 36. TMR Detects and Masks Deviated Operation. 

The idea of monitoring memory accesses can be applied to detect the attacks specific to protocol 
conversion which are described in section 3.2.4, because any meaningful changes in the data flow will 
eventually be seen in memory activities.  

3.3.5.3 Authentication and Verification of FPGA bitstreams and ICs 

For more general attacks in the supply chain, such as reverse engineering, tampering with the design 
and replacement of FPGA devices, encryption and authentication of the FPGA bitstream is required. 

Encryption can be used to protect a FPGA bitstream from being reverse engineered or modified. For 
example, Advanced Encryption Standard (AES) uses a private key which is kept secret to both encrypt 
and decrypt the data. The designer generates the private key and uses it to encrypt the bitstream. The 
private key is also loaded into the target device and is used for decryption when the user loads the 
bitstream to the FPGA. The vulnerability of using a single secret key is that the encryption could be 
broken once the key is stolen. Since the private key is pre-loaded in the FPGA it is possible for an 
attacker to obtain the key if he has physical access to the device. If the private key cannot be kept secret 
then a successful decryption does not guarantee the original bitstream provided by the designer. 

On the other hand, public key authentication mechanisms can provide a sign-and-verify process to 
ensure security. For example, the RSA algorithm uses a private key and public key; the private key being 
secret, and the public key being open. The two keys are mathematically linked, but it is impossible to 
calculate the private key using only information known about the public key. The designer encrypts the 
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FPGA bitstream with his private key (also known as signing) and loads his public key in the FPGA device. 
With the pre-loaded public key the user can decrypt the bitstream (also known as verification). 
Assuming the private key is kept secret a successful decryption indicates that the bitstream is the one 
signed by the designer. In authentication the private key is kept only by the designer; thus, it is much 
safer than the single private key used in encryption. 

Private key cryptography can provide protection against reverse engineering, but does not provide 
authentication. Public key cryptography can verify an authorized message, but the message can be 
viewed by anyone who has the public key, and therefore it cannot protect the IP information. 

Another possible attack is that the chip, module, or board is substituted during or after manufacturing. 
Detection of this kind of attack requires some form of a circuit signature. For example, physically 
unclonable functions (PUF) can provides such a signature or fingerprint. When a physical stimulus is 
applied to a structure it reacts in an unpredictable (but repeatable) way due to the interaction of the 
stimulus with the physical microstructure of the device. This microstructure depends on physical factors 
introduced during manufacture which are unpredictable. The applied stimulus is called the challenge, 
and the reaction of the PUF is called the response. A specific challenge and its corresponding response 
together form a challenge-response pair. The device's identity is established by the properties of the 
microstructure itself. The selection of an appropriate PUF as a circuit protection mechanism is part of 
our long-term future work. 

Testing of Prototype Hardware Design on NetFPGA card 

The initial work on testing the prototyping efforts during phase I for the protections on the for the 
Hardware Security Against Design and Manufacturing Attacks has been developed and tested using the 
KC705 development card. SiCore has provided a prototype card for use in the project to aid in testing 
both the logical implementation of the protections and design patterns and to verify the hardware 
configuration of the designs for the card that will be manufactured for the Sentinel by SiCore. The table 
below describes the differences between the initial development environment and the prototype board 
provided for testing by SiCore.  

 KC705 NetFPGA 

User FPGA Kintex-7 XC7K325T-2FFG900C Kintex-7 XC7K325T-1FFG676 
Reset Active high Active low 

On-board I/O 4 switches, 5 buttons, and 8 LEDs 4 buttons and 4 LEDs 
UART Interface With flow control signals No flow control signals 

Ethernet Interface 1 Marvell Alaska 88E1111 PHY 
(MII/GMII/RGMII/SGMII) 

4 Realtek RTL8211 PHYs  
(RGMII only) 

Table 16 – Differences between Kc705 and NetFPGA development environments 

The cores that have been instantiated on for the development of the hardware security protections 
have been tested using the LEON-3 soft core CPU on the FPGA onboard the KC705. The functionality that 
has been developed has included sending data over the UART to the LEON-3 CPU, incorporating the 
GPIO functionality of the board in the tests for functionality verification, accessing the external DDR-3 
and the on-chip BRAM as memory for the tests, creating a preliminary TMR design using the on-chip 
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BRAM. In addition, the development work has been extended to include the UART receiving data from 
the CPU and the Ethernet adapter sending data. These efforts were initially implemented using the 
KC750 environment. 

In recent efforts, we have endeavored to move the functionality of the initial designs over to the 
NetFPGA environment. This has included successfully instantiating the LEON-3 soft core on the NetFPGA 
board, resetting polarity changed from active-high to active-low, sending data from the UART, receiving 
data by the UART, testing the GPIO functions (buttons, LEDs) and testing the use of on-chip BRAMs as 
memory. We are currently evaluating the ability to send and receive data through the Ethernet adapter, 
establishing TCP/IP streams to the Raspberry Pi portions of the Sentinel. In addition, we are investigating 
the implementation of the TMR designs and verifiable voting schemes in both the KC705 and NetFPGA 
test environments. 

Side Thoughts of TMR and Bitstream Authentication 

The design shown in Figure 35 is for the purpose of demonstration. In a real design the voter should be 
put before the memory: the three copies of data written to memory are compared and voted, and the 
voting result is written to the three copies of memory. This ensures that any corrupted data will be 
corrected before being stored and that all of the three cores have a correct copy of data.  

A UAV requires real-time operations, and as such so should the detection and restoration processes 
used to protect critical systems. The voter of a TMR module will increase the delay of the data path to 
memory or output signals, and may result in an extra clock cycle if the original clock speed cannot be 
met. This slight change in timing should not affect the real-time requirement. 

When a mismatch is detected in a system using TMR it could be the result of either a persistent 
mismatch or a transient mismatch. A persistent mismatch is most likely to be caused by a permanent 
fault or a cyber-attack such as malicious software and/or hardware; while a transient mismatch is most 
likely to be caused by a single event upset (SEU). A transient fault should not last longer than the period 
of a single instruction. Therefore, any mismatch longer than that should be considered as a persistent 
one. A transient mismatch can be safely ignored, but a persistent mismatch must assert a warning to the 
human operator indicating that the flagged core needs investigation or repair.  

By definition, a system with TMR can tolerate up to one failed module. When a persistent mismatch is 
detected it is appealing to abandon the corrupted core. However, this makes the rest of the design 
vulnerable to transient faults caused by SEUs, because a SEU can still occur in the functional cores. In 
this case, the hardware must be replaced as soon as possible. In the meantime, if an error is detected 
(i.e., when a majority vote is not available) the system should enter a fail-safe mode. Alternatively, if 
hardware support allows, it can roll back and retry.  

Although TMR is an effective technique for security, it has its own Achilles' heel; i.e., the voter. Since the 
voter is not triplicated, it is vulnerable to attacks. Two options are available:  

1. Put the voter on a piece of trusted hardware which is kept separated from the FPGA. 
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2. Keep the voter in the FPGA design and leave the security concern to the FPGA bitstream.  
 

Option (1) is promising if the design is transferred to discrete integrated circuits (ICs) in the future, and is 
also useful for checking other functions on the SHIELD Coprocessor. In addition, the design of a voter is 
straightforward, which makes it reasonable to put it on a piece of dedicated hardware. However, this 
may lead to timing issues because data has to be sent off-chip to the voter and then sent back on-chip 
again. Furthermore, the dedicated voter must be authenticated or trusted otherwise it would become a 
single point of failure. 

Option (2) is suitable for a FPGA design and other single-chip solutions. The authentication of the voter 
can be done along with other FPGA designs. These tradeoffs need to be considered when making the 
design decisions. 

3.4 Evaluative Criteria 

As the project has progressed from the formulation of System-Aware security patterns to a prototyping 
pilot effort used for validating the System-Aware cyber security concept, our team has been addressing 
a set of design-related questions that can support future efforts related to implementations of the 
System Aware Cyber Security concept. The answers to these questions impact the potential viability of 
using the System Aware concept in a potential application and the level of performance that can be 
achieved: 

 What are potential attacks? Which system components and functions are most critical to the 
system? How vulnerable to attack are they, and how could an adversary do the most damage to 
degrade functionality with the least cost to the adversary? In turn, which attacks can we protect 
against for the least cost to us while increasing the cost and complexity to the adversary?  

 What are the available data measurements from the system to be monitored? In order to 
provide a reliable Sentinel platform to detect and classify anomalous behaviors and attacks in 
critical functional areas, we must possess the ability to interface with and to extract data from 
those critical functions. In addition, the data that can be extracted may directly affect the 
security design patterns that are employed to enhance a given system’s security. For example, 
as the variety of measurements about the state of a critical function increases, so does the 
potential number of diversely redundant algorithms available for ensuring the integrity of that 
the critical function.  Finally, the amount of data that can be extracted from the Sentinel is 
critical to accurately gauge the Sentinel’s ability to protect a system function and restore that 
function when it is under attack. 

 What should be measured to protect against potential cyber-attacks? What are the critical 
pieces of information that are needed to adequately determine the state of the system? Should 
new sensors be added to the system to enhance the monitoring capabilities of the Sentinel 
while not degrading normal system behaviors? If information is needed from multiple parts of 
the system to verify a system state, how is that information integrated to provide an accurate 
system state and better detection of anomalous system behavior? 

 Can we standardize the data collection protocols for collecting the data provided by the 

monitored system? The ability to standardize the data extracted from system functions into a 
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form that can be utilized by the Sentinel is necessary to integrate with legacy systems and 
facilitate reusability across a diverse set of domains. This standardization can potentially impact 
the Sentinel’s ability to deal with the timing and latency issues associated with monitoring 
functions, differing interfaces for the system that are required to extract the data, and the 
potential collateral effects on the system function being monitored and on other parts of the 
system. 

 What is the rate of the data measurements that are needed to adequately detect a cyber-

attack? To understand this question, one must investigate the normal rate of change of the 
system configuration, the nature of specific attacks, the rate of change in system configuration 
that would be deemed to be unacceptable, the consequences of potential attacks, acceptable 
responses to successful exploits, the stability of the configurations of the system, and the 
sensitivity of the rate of change of those configurations related to the monitoring and detection 
functions of the Sentinel. 

 What are the methods needed for assuring the integrity of an operation? When looking at the 
critical system functions, which security design patterns make the most impact in providing 
protection for the system without hindering the operation of the system? Which patterns create 
the greatest difficulty for adversaries in terms of developing alternative attacks that achieve 
similar outcomes? If you distribute those security design patterns across several platforms, how 
do they communicate and how often do they update each other? 

 What is the complexity of the algorithms used for securing the system to be protected? We 
must evaluate the complexity of the algorithms and the tradeoffs with complexity versus system 
security and system performance.  

 How should the Sentinel respond once an attack has been detected? Under what 
circumstances does the system automatically get restored to another state? If the system is not 
automatically restored, who should be informed in the event an attack has taken place? What 
information should those individuals be provided, and what options are they given for 
restoration? Should the attack be allowed to continue for analysis purposes so as not to tip off 
the attacker that their attack has been detected? 

As the ongoing project transitions from hardware-based simulation to a flight-ready hardware 
implementation of the Sentinel, we will need to continue to refine the answers to these questions and 
develop the methods to collect the data necessary to support evaluations of the Sentinel solutions. 
Though the focus of this prototyping effort is focused on the specific Outlaw ER aircraft surveillance 
system configuration and the Piccolo autopilot, these questions also need to be addressed in the 
framework of how the Sentinel functionality would answer them in a more generic class of physical 
systems.  
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4 Proposed Work for Phase II 

This section outlines the Phase 2 efforts by the UVa and the GTRI to transition the System-Aware cyber 
security solutions developed under RT-42 into a Sentinel configured to meet the size, weight, power and 
functional requirements necessary for airborne use, including a flight-ready demonstration of the 
Sentinel.  As noted section 3.3.1.1, the CloudShield does not meet the weight and size requirements 
necessary for airborne use. As a result, a flightworthy Sentinel will be developed based on the SiCore 
SHIELD CoProcessor discussed in section 3.3.1.3.  The Sentinel algorithms for detecting the attack, 
alerting the operator, and taking remedial action will be based upon those developed in RT-42. The 
following subsections describe the tasks that will be performed in order to conduct a flight 
demonstration of the Sentinel concept. 

4.1 Proposed Hardware Architecture for Flight Demonstration  

Figure 37 presents the proposed system architecture for the flight demonstration.  In the upper left 
corner of the figure is the Piccolo autopilot. The autopilot communicates with the ground control station 
through redundant radio links at 900 MHz and 450 MHz. These links are used to send command and 
control signals from the ground station to the aircraft, as well as send telemetry data from the aircraft to 
the ground control station. Two of the communications ports on the autopilot (Com Port 1 and 2) will be 
used in the implementation of the autopilot attack (see section 3.1 for details).  A Raspberry Pi SBC (RPi 
1 in Figure 37) will host the parameter-based exploit developed under RT-42 that will attack the 
autopilot by changing its waypoints in the mission list. To hide this attack from the UAV operator RPi 1 
will also send a trigger signal to malware on the machine hosting the PCC that will hide the change to 
the waypoints.  This signal will be sent over one of the autopilot’s Time Processor Units (TPUs) that can 
be used as discrete signal communication lines. These lines are monitored or set by the autopilot system 
and their status (high or low) is encoded in the autopilot message stream.  Another TPU will be used to 
send a signal from the malware on the PCC to RPi 1 to signal the start of the display masking attack.  In a 
similar fashion, RPi 2 will host an exploit used to compromise the GPS data sent from the autopilot to 
the gimbal then on to the ViewPoint software to be used to view the video (see section 3.2.2 for details).  
RPi 1 and RPi 2 are both connected to the Cyber Station (lower left corner of Figure 37) via Ethernet over 
a 2.4 GHz radio link.  This connection will be used to communicate with the processors and trigger the 
cyber-attacks during the demonstration. 

The UAV Sentinel will be implemented on a SiCore SHIELD CoProcessor as shown in the center of Figure 
37.  Details of the UAV Sentinel are presented in section 4.2.2. The UAV Sentinel monitors serial data 
traffic at the locations depicted in Figure 37 using the Raspberry Pi snooper developed under RT-42 (see 
section 2.2).  The Sentinel has two communication paths. The first one is an RS-232 based serial link 
through Com Port 3 on the autopilot. Using this link the Sentinel can send warnings and alerts to the 
UAV operator through the second payload message stream. The other communication path is over 
Ethernet via the 2.4 GHz radio link, the same link used by RPi 1 and RPi 2. 
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Figure 37. Architectural block diagram illustrating how the UAV SHIELD Sentinel will be integrated into the GTRI’s GAUSS platform. 
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4.2 Needed Development to Reach Next Milestones  

4.2.1 Develop on-board and ground attacks 

4.2.1.1 Gimbal Attack 

Two of the gimbal attacks described in section 3.2.3.3 will be implemented in the flight demonstration. 
These are the Extend/Retract attack (section 3.2.3.3.1) and the Gimbal Command attack (section 
3.2.3.3.3). The source of these attacks will come from malware on the PCC embedded as a plugin. The 
attack software will monitor the aircraft’s location by decoding the telemetry stream and reading the 
GPS coordinates. The attack will be triggered when the UAV enters a predetermined geographical area.   

4.2.1.2 GPS Attack 

During the Phase 1 work on exploiting and monitoring the autopilot GPS system, the research team 
developed algorithms to successfully manipulate GPS data in the HiL emulation environment for the 
Piccolo II autopilot system and to detect anomalies in the GPS data stream. Unfortunately, this attack 
utilizes the CAN bus interface, which is only available in the emulation environment. In addition, this 
attack carries a risk of losing control of the aircraft during flight. However, the algorithms developed for 
the attack and for the detection of the GPS attack will port directly to the serial interfaces that connect 
the autopilot to other components on board the plane.  

The research team has opted to demonstrate the GPS attack on board the plane by executing an attack 
against the gimbal GPS instead of the autopilot GPS. The gimbal GPS data is used for locking the gimbal 
on a point of interest and for geolocating tracked targets. The GPS data from the gimbal is stored as 
metadata for the video imagery along with other geospatial data, indicating where the images that are 
sent to the ground for processing or recording into the Cloud Cap ViewPoint software environment were 
taken.   

The GPS attack will be executed by a Raspberry Pi processor RPi 2 onboard the aircraft.  The attack will 
corrupt the GPS data from the gimbal that is stored as metadata with the video. Thus, when the video is 
viewed it will have incorrect GPS coordinates associated with it.  This type of attack is subtle and 
removes much of the intelligence value from the video both in real time and for forensic purposes (i.e., 
if the video and its associated metadata is stored for later analytical use). The Sentinel detection 
algorithms built in Phase 1 will be enhanced to include a third source of GPS data. A separate, external 
GPS unit will be added to the hardware configuration on board the aircraft which will provide the 
Sentinel with three sources of GPS data (the gimbal GPS, autopilot GPS and the new external GPS). This 
will enable the Sentinel to employ diverse redundancy and verifiable voting security design patterns to 
aid in eliminating corrupted GPS data streams and to provide restorative capabilities to the during the 
flight demonstration.  

4.2.1.3 Parameter-Based System Attack 

The goal of this task will be to implement the parameter attack outlined in section 3.2.1 for the flight 
demonstration. The in-flight demonstration of the parameter-based attack will be focused on attacking 
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the waypoint parameters for the flight plan; i.e., modifying the flight on the Piccolo autopilot and hiding 
the attack from the operator by executing a secondary attack on the PCC. 

As seen in Figure 37, the platform selected for the exploit is a Raspberry Pi SBC attached to the Piccolo 
autopilot (RPi1 in Figure 37). To deploy the exploit on a Raspberry Pi will require several modifications to 
the exploit developed for RT-42: 

 Original exploit was developed for a laptop running the Windows 7© OS using a SDK provided by 
Cloud Cap Technology. The target platform is a Raspberry Pi running the Raspbian (i.e., Linux) 
OS using an updated version of the communications SDK provided by Cloud Cap Technology. 
The exploit developed for RT-42 will need to be updated to use the new libraries. 

 Exploit developed for RT-42 enabled a user to trigger the exploit through a simple text interface 
on the local machine; this triggering option will be impossible for the flight demonstration. 
Instead the trigger will be initiated either by the aircraft entering a specific geographic region or 
through a remote interface provided over the 2.4 GHz channel. 

 Deep packet inspection functionality that is currently utilized in the CloudShield for RT-42 will 
be recreated using the Raspberry Pi platforms and the communications SDK to make the 
Sentinel flight-ready. 

 Additional software development and testing will be needed to ensure the application is robust 
to potential failures. 

 Exploit will need to be configured such that it is approved safe for a live flight demonstration. 
 Exploit developed for RT-42 triggered the masking exploit on the ground using one of the user 

defined payload streams available on the Piccolo autopilot.  
 Exploit will need to be re-written to utilize the TPU as discussed in section 4.1. To ensure that 

control over the aircraft is maintained at all times, the masking attack will be able to be started 
and stopped by a user located on the ground. This channel will be independent of the remote 
signal sent by the airborne exploit as well as capable of overriding it if needed. 

 

4.2.1.4 Hardware Security against Design and Manufacturing Attacks 

The Sentinel requires that the systems that interface with it standardize their interface protocols to an 
IP-based protocol for Sentinel monitoring, detection and potential restoration activities. To protect the 
Sentinel functionality we must protect the data protocol conversion process. In this case, the conversion 
is from RS-232, the main communications protocol for the Piccolo II autopilot, to the TCP/IP protocol for 
the Sentinel. In addition, we must have the same protections for TCP/IP protocol communications back 
from the Sentinel to RS-232 back to the autopilot. This is required for restoration command for other 
Sentinel protections. 

Two of the hardware design attacks to the Sentinel's data conversion protocol will be implemented in 
the flight demonstration. These are the denial-of-service attack and the data spoofing attack described 
in section 3.2.4. The attack will be performed by a hardware Trojan embedded in one of the three soft-
cores located on the FGPA platform on board the SiCore UAV SHIELD card. The hardware Trojan will 
monitor the RS-232 data flows. When the triggering pattern is recognized the hardware Trojan will 
initiate the attack. The attack will be demonstrated via two separate triggering mechanisms: (1) by 
predetermined GPS coordinates and (2) by injecting the appropriate signal from the ground station. 



Report No. SERC-2014-TR-036-3                                                                                                                             95 
 

The three soft-cores will be implemented on the FPGA and will provide the main platform for providing 
protection for the data conversions on the Sentinel platform. We will implement diverse redundancy 
and verifiable voting security design patterns as protection mechanism for the data conversion 
processes for the Sentinel. The three soft-cores will also provide the platform for TMR methods to 
protect the data streams and conversion processes. A voter will be designed and developed to ensure 
that only protected data streams are sent in and out of the Sentinel. 

4.2.2 Development of the UAV Sentinel 

4.2.2.1 UAV SHIELD 

The processor for the UAV SHIELD is a FPGA running three soft-core processors, which run applications 
developed by the UVa and the GTRI. These soft-core processors communicate with other hardware on 
the UAV through four Ethernet ports and eight RS-232 serial ports. It also has an SD card used for 
securely storing data. The proposed UAV Shield architecture is presented in Figure 38.   

 

Figure 38. Proposed UAV SHIELD architectural block diagram. 

4.2.2.1.1 NetFPGA-7 
Many modifications were made to the design of the SHIELD Coprocessor to produce the design of the 
UAV SHIELD. The hardware of the UAV SHIELD is similar Computer Measurement Lab's (CML) and 
Sicore's NetFPGA-7 card (Figure 39). NetFPGA-7's capabilities include hardware mediation (SATA, 
Ethernet, Memory), which is controlled by the OODA Real-time Controller. This card will be used as a 
prototyping platform while the final version of the SHIELD Card for Sentinel (and for this project) is being 
fabricated.  
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Figure 39. NetFPGA-7 architectural block diagram. 

 

4.2.2.1.2 Modifications to SHIELD Card for the Sentinel 
 Change FPGA to the Kintex 7 FPGA 

An FPGA needed to be selected with the capability of running three soft-
core processors and establishing the integrity of the bitstream loaded to it. 
The Kintex 7 FPGA was chosen to specify these needs. It contains more 
than enough resources to instantiate the three soft-core processors and 
the interfaces to the Ethernet and RS-232 ports. 
For bitstream protection, at initialization, a cryptographic key associated 
with the bitstream is written to non-volatile tamper-resistant memory on 
the FPGA. Once written, a new key cannot be written to it. The compiler on 
the development machine encrypts the bitstream, which is then 
programmed to EEPROM on the UAV SHIELD. During power-up the 
bitstream from the EEPROM is written to the FPGA and decrypted. This 
process authenticates the bitstream and establishes its integrity. A 
bitstream written by an attacker and loaded to the EEPROM would fail to 
decrypt. 

 Removal of the PPC460EXr 
Since bitstream integrity is handled by the FPGA, the PPC460EXr was 
removed from the UAV SHIELD. The cryptographic capabilities are handled 
by the FPGA. Interfaces to the RS-232 and Ethernet ports are also handled 
by the FPGA. 

 Removal of the MAXQ1103 and Anti-Tamper Circuitry 
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The anti-tamper circuitry was removed to reduce the weight of the card. 
With this removal, it also allowed the removal of the Cyclone II FPGA, 
which acted as a conduit between the PPC and MAXQ and battery holders 
which were used for backing up the MAXQ's battery-backed and zeroizable 
memory. 

 Removal of the PCIE Interface 
The UAV SHIELD operates as a standalone card and does not interface with 
a host system, which allowed the PCIE interface to be removed. 

 Switch from SATA HDD to Secure Digital (SD) Card 
The amount of storage offered by a SATA HDD was not needed for the UAV 
SHIELD. In addition, a change to an SD card reduced the weight of the card 
and the number of components with moving parts. 

 Addition of RS-232 and Ethernet Interfaces 
The UAV SHIELD communicates with three Raspberry Pis through Ethernet, 
which required the addition of more Ethernet ports. It communicates with 
other hardware on the UAV, which required the addition of an RS-232 octal 
UART chip and eight RS-232 ports. 

 Additional Modifications 
• 512MB DDR Memory upgraded to 1GB 
• 64MB Flash Memory upgraded to 128MB 

4.2.2.1.3 Potential SHIELD Security Features to be Selected for Final Implementation 
This printed circuit board (PCB) is designed to support the development and demonstration of 
countermeasures against COTS supply chain corruption. These countermeasures are intended to defend 
against potential design logic, configuration bitstream and hardware mask exploits. Insider attacks 
within the supply chain are of particular concern, so multiple layers of defense are employed to help 
thwart potentially malicious insider activity that may occur at various links in the chain. Defensive 
capabilities are provided at the design logic, device configuration, and device mask levels. Diverse on-
board subsystems help support these capabilities. 

Core supply monitoring and multi-gigabit serial I/O is provided to help support individual device 
qualification against intentional mask corruption. This is made feasible via a combination of low 
frequency supply measurements and high-speed on-chip timing measurements. Design configuration 
bitstreams, although well-defended by manufacturer encryption methods, are still vulnerable to 
potential external key discovery, insider key theft and spoofing. Support for both vendor-independent 
end-to-end bitstream authentication and field installation authentication is provided to erect additional 
barriers against such attacks. In addition, the design logic itself can be corrupted even though bitstream 
encryption and programmable array electronics are intact. This attack vector is countered via the use of 
design-independent implementation verification to detect either static or dynamic corruption of the 
intended design logic. 

These countermeasures combine to provide effective integrated defenses against hardware attacks at 
low incremental cost to the PCB design. 
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Figure 40. UAV SHIELD block diagram for the the FPGA with supporting cryptographic HW. 

 
The OODA Real-time controller is a software package that implements the OODA Loop (Figure 41). The 
OODA Loop is a concept developed by military strategist and USAF Colonel John Boyd, that describes the 
method that individuals and organizations process and respond to events. Entities that can process the 
cycle quickly and intelligently can gain an advantage over their opponents. The loop consists of four 
major elements: Observe, Orient, Decide, and Act. 

 

 
Figure 41. OODA Real-time controller that implements the OODA loop on the SHIELD Coprocessor. 
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The OODA Real-time Controller is a multi-threaded application that implements the observe, orient, 
decide, and act elements of the OODA loop in their own threads. It interfaces with various agent 
applications that gather observations about the environment and execute actions as directed by the 
OODA Real-time Controller. In the NetFPGA-7, these agents control the various hardware mediation 
capabilities. 

The NetFPGA-7 card has hardware mediation capabilities (Figure 42). There are several benefits of 
hardware mediation: 

 Establishing a defensive base independent of the host system. 
 Monitoring capabilities to detect anomalous behavior. 
 Implementing defenses without using host system resources. 
 Deploying countermeasures at a hardware level 9. 

 

 
Figure 42. Block diagram of the NetFPGA-7 mediators. 

 
The Ethernet Mediator is used for network intrusion detection. It captures ingoing and outgoing raw 
Ethernet packets, analyzes them, and forwards them to their destinations, during normal operation. It 
possesses several capabilities: 

 Network packet monitoring and logging capabilities. 
 Firewall capabilities that protect a specific system from external threats and detect malicious 

behavior on the host system. 
 Synthetic packet injection. 
 Packet redirection, through modifying the IP and MAC addresses. 
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The SATA Mediator protects the host system's hard drive. It captures all packets traversing between the 
host system's host bust adapter (HBA) and hard disk drive (HDD). The host system's HDD can also be 
accessed by firmware running on the NetFPGA-7 card without the host system's knowledge. The SATA 
Mediator provides several security capabilities: 

 Hardware Write-Protection of partitions and files. 
 File corruption detection. 
 Autonomic restoration of corrupted files. 

 

The memory mediator provides the user with the ability to covertly access the host memory. This 
capability allows the user to transparently and dynamically respond to malware. The memory mediator 
can observe and modify the host system’s memory. Additionally, the mediator does not interfere with 
the host processor’s access to memory. The host processor does not have any visibility into the memory 
mediator’s actions. This enables cyber security systems to detect and repair subversion in near real-
time. Detection and Mitigation development on new platform 

4.2.2.1.4 Gimbal Attack Detection, Mitigation, and Restoration 

The detection and mitigation of the gimbal attacks will follow the methods outlined in section 3.3.4.  If 
the gimbal receives retract or angle commands that seem inappropriate in the context of the mission an 
alert will be issued to the operator and cyber-security office. 

4.2.2.1.5 Parameter-Based System Attack Detection, Mitigation, and Restoration 

The following modifications are required to deploy the System-Aware cyber security protections 
discussed in section 3.3.2 to defend against the parameter-based attack: 

 CloudShield was chosen as the Sentinel platform for prototyping under RT-42. These protection 
mechanisms will need to be developed for the UAV SHIELD. As seen in Figure 37, three 
Raspberry Pi SBCs will form the platforms for hosting System-Aware algorithms for the UAV 
SHIELD Sentinel. Software developed for the CloudShield will need to be ported to this new 
environment: 

o Configuration hopping capabilities of the CloudShield prototype. 
o Cyber commander communications channel will be changed from an 802.11 wireless 

network to utilizing the user defined payload stream of the Piccolo autopilot. 
 The airborne Sentinel will include the Secure Voting System-Aware design pattern. As this 

pattern was not part of the prototype developed under RT-42, additional development will be 
needed. 

 Integration work to host the parameter-based, GPS, and Gimbal detection and restoration 
designs on the same platform will be required. 

 Additional software development and testing will be needed to ensure the Sentinel security 
functions are robust to potential failures. 

 Inclusion of Diverse Redundancy System-Aware design pattern through the implementation 
diverse (i.e., at least two) different implementations of the protection algorithms for the 
parameter-based-attack. 
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4.2.2.1.6 Hardware Security against Design and Manufacturing Attacks 

As stated in section 3.3.5, we propose to apply TMR to the soft-core-based protocol conversion of data 
coming in from the RS-232 based communications from the Piccolo to the TCP/IP protocol for the 
Sentinel. This conversion process is a potential vulnerability that needs to be protected to ensure the 
Sentinel is able to fulfill its security role. The protocol converter between RS-232 and TCP/IP will be 
implemented on the UAV SHIELD board provided by SiCore. A block diagram of the UAV SHIELD board is 
shown in Figure 43. 

 

 

Figure 43. Block Diagram of the UAV SHIELD board. 

The SHIELD board contains a user FPGA (Xilinx Zynq-7000 series). Three soft-cores and their peripherals 
will be implemented using the programmable logic in the FPGA in order to add the redundancy required 
for security considerations. Each processor will have its own peripherals such as UART interface, 
Ethernet interface, etc. Therefore TMR is applied to protect both the processors and the interfaces. 

A majority voter will be implemented on the FPGA and will be used to generate a single output, masking 
the incorrect data stream of the corrupted core. Since the voter is not protected by TMR it could be 
vulnerable to attacks. To ensure the security of the voter, it must be developed by a trusted designer 
and thoroughly inspected. Since a voter's logic is straightforward only light inspection effort will be 
required. After the design process, the voter will be protected by the encryption and authentication of 
FPGA bitstream.  
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Protocol conversion will be done bi-directionally. In the RS-232-to-Ethernet (TCP/IP) direction a RS-232 
data stream comes in on the UART interface and gets triplicated and sent to the three soft-cores. When 
the conversion is done the voter takes the data from the three cores and determines the result. The 
output of the voter is then sent to the Ethernet interface, which wraps the data into Ethernet packets. 
The Ethernet packets will be sent to three Raspberry Pi’s within the Sentinel through a network switch. 
Therefore, the Ethernet interface will send each packet in the data stream to three different IP 
addresses. 

In the Ethernet-to-RS-232 direction the data flow is the opposite of the aforementioned process. Again, 
a voter will be used to generate a single data stream before sending it back put to the UART interface. 

Protocol conversion will be performed by software which runs on the soft-cores on the FPGA. The three 
soft-cores will share 1 GB DRAM on the UAV SHIELD board. The EEPROM will be used for storing the 
FPGA configuration bitstream. The software (a bare-metal application) for protocol conversion will be 
stored in the flash memory on board the SHIELD board. 

The UAV SHIELD board contains a user FPGA. For the purpose of prototyping, we propose to use LEON3 
soft-core processor. LEON3 is an open source synthesizable VHDL model of a 32-bit processor compliant 
with the SPARC V8 architecture. The model is highly configurable. This allows the implementation of 
cores with different configurations, which is desirable for the purpose of this project. In addition, LEON3 
is device-independent, which makes the design portable to other devices in the future. For prototyping 
purposes, we will also make use of the NetFPGA7 card (described in section 4.2.2.1.1) from SiCore that is 
similar in design to the final UAV SHIELD configuration while that final card configuration is being 
fabricated.  

4.2.2.1.6.1 Detection of Attacks in the Post-design Phase 

In order to detect more general attacks in the supply chain, such as reverse engineering, tampering with 
the design and replacement of FPGA devices, encryption and authentication of the FPGA bitstream is 
required. 

The Xilinx FPGA employs AES and RSA for the purpose of bitstream encryption and authentication, 
respectively. These features can be used to detect and prevent supply chain attacks. Therefore the 
detection of general attacks in the post-design phase supply chain can be done by this built-in feature. 

The triplicated soft-cores, their peripherals, as well as extra circuits for the purpose of attacking, 
detection, and restoration will be implemented on the FPGA. The three soft-cores will share 1 GB DRAM 
on the SHIELD board. The EEPROM will be used for storing the FPGA bitstream. The bare-metal 
application for protocol conversion will be stored in the Flash memory. 

A long-term goal is to investigate the feasibility of using ARM-based cores from different vendors. One 
of the advantages of the ARM architecture is that it is widely used and therefore many options are 
available. 
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We also propose as a long-term goal to prototype for discrete ICs, and to develop IC design rules in 
terms of hardware security, as well as board-level design patterns that can be generalized to any digital 
IC and chip sets. 

In addition, we propose to apply PUFs to the hardware. PUFs provide a way to generate a fingerprint of 
a circuit and therefore can be used to authenticate a FPGA device itself.  

Furthermore, recovery is required to distinguish between a transient fault caused by an SEU and a 
persistent error caused by an attack. For example, if an SEU flips a bit in a FIFO, recovery is not 
necessary because the data is used only once. However, if an SEU flips a bit in a memory, then recovery 
is required because the same location could be read for multiple times. Both situations mentioned 
above should be distinguished from an attack, in which case the malfunctioning core will be kicked out 
of the system. 

4.2.3 Design and Build Integrated System 

The platform described in Figure 37 describes the new Sentinel platform. The on board, flight-ready 
version of the Sentinel is comprised of the new SiCore UAV Shield card, three Raspberry Pis, and a small 
network switch. In addition to the Sentinel hardware, there are two attack platforms (two Raspberry Pis) 
that will serve as snoopers and malware injectors into the autopilot and gimbal systems. 

The software components that have been developed separately for each of the attack scenarios will be 
integrated on to the hardware platform described in Figure 37. In addition to the attack platforms, 
Phase 2 efforts will also focus on integrating the Sentinel monitoring, detection and restoration 
methodologies that have been designed and tested separately in Phase 1 into an integrated Sentinel 
platform on board the flight-ready Sentinel hardware. Software development and integration activities 
will run through June 2014. 

4.2.3.1 Build onboard package for Sentinel and Interfaces 

The components of the onboard Sentinel and attack platforms will have a supporting infrastructure on 
the airframe. This will include a casing for the hardware components and the associated wiring 
harnesses needed to support the interfaces for the Sentinel and the connections for the network and 
attack platforms. The build of the physical hardware environment with software on board will be 
completed by July, 2014 

4.2.4 Ground Testing 

Extensive ground testing will be conducted prior to the flight demonstration. Initial testing will be 
conducted with individual components, subassemblies, and the complete system in a bench-top 
environment.  Afterwards the complete system will be installed in the aircraft for further ground testing.  
The following subsections describe the ground test activity. Ground tests will be completed by the 
middle of September, 2014. 

4.2.4.1 Test integrated system in a HiL/bench-top environment 

Initially the Sentinel components will be tested using the HiL emulators at the UVa and GTRI.  After the 
components have been verified as functioning properly, they will be integrated to form the complete 
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Sentinel system.  This system will then be tested in the GTRI HiL emulator which best replicates the 
GAUSS UAV.  During the HiL emulator testing, all of the hardware and software components for the 
attacks, detections, and mitigation will be verified to be functioning properly. 

4.2.4.2 Move solution to airframe for on-ground testing 

Once the HiL emulator testing has verified that the system is working properly on the bench-top, the 
system will be installed in the GTRI GAUSS UAV.  This will allow testing of the system with the actual 
onboard power supplies and radio frequency (RF) modems in conjunction with the GTRI HiL emulator.  
Testing will be conducted with the engine running to make sure that the vibration and electromagnetic 
environments are acceptable.  The test plans for the demonstration flights will be executed during the 
emulator testing as a rehearsal for the actual flights. 

4.2.5 Flight Testing  

Two flight demonstrations are planned following the completion of the ground tests using the HiL 
emulator.  The flights will be conducted at the Early Co. airport in southwest Georgia.  GTRI has a 
Certificate of Authorization (COA) from the FAA to operate the GAUSS UAV at this general aviation 
airport.  The flights will take place within the boundaries of the COA shown in Figure 44. Flight testing 
will run from the October through the middle of November, 2014. 
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Figure 44.  COA Boundaries for Early Co., GA. 

 

4.3 Required Activities, Distribution of Effort, Deliverables, Costs and Schedules 

A Gantt chart of the proposed schedule for Phase 2 is presented in Table 17 in the Appendix.    

4.4 On-going Evaluative Questions and Early Outcomes 

As discussed in section 3.4, there are several research questions related to the implementation of a 
super secure Sentinel for UAS that we hope to address in both Phase 1 and Phase 2 of this project. As we 
progress through the implementation of the Sentinel for the UAV flight system, we will continuously 
evaluate the practicality of each of the proposed measurements and their associated analysis algorithms 
for completion within this phase of the project and present rational for cases where it proves to be 
impractical while including suggestions that will serve as the basis for future implementation strategies. 

What are potential attacks? 

As outlined in section 3.1.3.3, our team identified and selected four exploits to protect against: 

1. Waypoint, parameter attack. 
2. GPS navigation attack. 
3. Gimbal / Camera attack. 
4. Attack against the data conversion interfaces. 

What are the available data measurements from the system to be monitored?  

The documentation for the Piccolo autopilot provides significant detail about the physical layout of the 
autopilot and the details of the structures of the streams of data that serve to control the system. These 
streams include telemetry data structures that report the orientation of the aircraft and its control 
surfaces, payload data that reports mission data, gimbal stream that reports the status of the aircraft’s 
TASE camera gimbal system, and general status packets which constantly update the status of the 
various sub-systems controlled through the Piccolo autopilot. This off-the-shelf documentation is 
available to customers of who have purchased the Piccolo autopilot.  

As we look into what data needs to be collected for use in evaluating the performance of the Sentinel, 
there are additional data that needs to be collected and additional analytical processes that need to be 
addressed. For example, considering the attack on the GPS data affecting the imagery metadata, we 
must not only track the existing autopilot GPS stream, but also analyze the data coming from the other 
diverse, redundant GPS systems to be able to accurately run detection algorithms, and to classify 
deviations as either cyber-attacks or system failures with desired likelihood of detection and acceptable 
false alarm rates. The readings from that system must be standardized into common timing and 
common formatting for comparisons within the Sentinel architecture and time series of data will need 
to be recorded for use in evaluation of Sentinel performance. In addition, to evaluate the collateral 
impacts of the Sentinel on the systems that are being monitored, we will need to collect data from tests 
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that have the Sentinel in place, and compare the results with test cases where the Sentinel is not 
engaged to help gauge the impact of running the protection algorithms.  

As part of the next phase, we also will need to need to collect data that will be generated by the 
Sentinel, so as to produce data sets that that will allow us to evaluate the performance of different 
design patterns within the Sentinel design, and analyze that data to look closely at the ability to detect 
the attacks as they occur, and the performance of the system after a restoration to determine if we have 
returned to normal systems operation. This will be vital in scenarios where attacks continuously repeat 
themselves and when continuous corrective actions may be necessary to keeps the system functioning. 

Ultimately, we would like to evaluate the feasibility of recording the entire data stream from the 
autopilot, the gimbal system and the Sentinel in order to enable our ability to replay the entire flight and 
use the data for forensic analysis. Where that data is collected and the realities of the physical 
limitations in the on-board system may dictate how much data we can collect and where the data will 
be stored.  

The project team will formalize the data plan for evaluative purposes and that plan will provide the basis 
for the data logging mechanisms inserted into the hardware platform and also for the algorithms that 
will be used to evaluate the performance of the Sentinel protection and their effects on the monitored 
subsystems. 

What should be measured to protect against potential cyber-attacks 

Data measurements needed to protect the UAV against the identified exploits are outlined in section 
3.4. 

In terms of measuring the ability to collect data needed to evaluate the ability of the Sentinel to protect 
the system function under attack, Phase 2 of this project will help to identify the actual data measures 
that are needed to evaluate Sentinel performance. This will include data that is recorded on the ground 
and in the air and will also reflect data that is collected from both the system itself, in this case the 
autopilot, gimbal and ground components, and the Sentinel architecture itself. 

Can we standardize the data that is provided by the various interfaces? 

As part of the investigation of the use of Sentinel protections, the UVA/GTRI team has addressed the 
need to standardize the data traffic streams for analysis. For this system, RS-232 serial communications 
were converted to IP (Internet Protocol) based data packets which can be used for monitoring, 
detection, and for system restoration. As we look into protecting other systems, each will have its own 
set of data protocols that will need to be put into a standardize format that the Sentinel technology can 
use. The proliferation of the IP protocol and the large number of interfaces that allow for easy 
conversion to the IP protocol make it a logical candidate for a design standard. The implications to 
system latencies, timing, and other collateral effects will need to be investigated. Bench testing has 
shown that this serial to IP conversion process has been stable and reliable. However, as we move into a 
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physical implementation, the latencies associated with the conversion process will need to be evaluated 
for collateral system impacts.      

The conversion from the serial data stream to IP will be protected by a triple redundant validation 
scheme that will aim to ensure that the data being input to the Sentinel can be trusted. However, this 
protection potentially introduces additional overhead and latencies that will need to be evaluated and 
data will need to be produced to make that evaluation possible.  

What is the frequency of the data measurements that we need to extract to adequately detect system 

state changes that might indicate a cyber-attack? 

In general, the frequency of data measurements needed to defend against a potential cyber-attack is in 
human terms; i.e., seconds and minutes. For example, the system transmits status message containing 
detailed information about the state of the aircraft approximately every 6 seconds, and this status 
message is the most prevalent data packet in the serial data streams we observed. As outlined in section 
3.4, this rate of data measurement is perfectly adequate for detecting, defending, and restoring from 
several potential cyber-attacks. However, the time sensitivity of system functions may vary across the 
different sub-systems and each may have different timing issues that need to be addressed to monitor 
them, and also to utilize the interfaces as mechanisms for restoration when they are under attack. In 
addition, we must be able to determine the sensitivity of the system in terms of false detections (or false 
alarms) versus increased security.  

For each of the attack scenarios, there will be a difference between when the initiation of an attack 
occurs, the detection of the attack, and the time it takes for a restorative action. Those time differences 
will ultimately drive us to what state we can or want to put the system back to and how we manage that 
restoration while continuing normal system operation. For example, to protect the gimbal system we 
are investigating the use of mission context for the evaluation and classification of a system change. If 
the monitor sees a change in system commands, we must evaluate whether the context provided is 
adequate to allow the change to happen or if the system should block that change. Ultimately, the 
sensitivity of the change to the context will affect the number of false detections. This also raises the 
need to have experimentation to help decide issues such as when to provide an alert, when to allow a 
change because it is easily recoverable, when to block the change, etc. These kind of issues also allow 
the human (i.e. the operator or the cyber officer) to have some input into that decision making process.  

What are the methods needed for assuring the integrity of an operation? 

The methods used for realizing System-Aware security are outlined in section 3.1.  

What is the complexity of the algorithms used for securing the system to be protected? 

As outlined in section 3.3.1, the algorithms used for protecting the UAV against the selected exploits 
have been relatively small; i.e., hundreds of lines of code. However, the complexity of these algorithms 
may change as the project transitions from HiL emulation to flight-ready hardware. In addition, changes 
may be necessary as these algorithms are implemented in the UAV SHIELD card used to implement the 
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Sentinel. Thus, part of the effort for Phase 2 will be to see how the complexity of these algorithms 
change based upon the constraints imposed by a UAV. 

How should the Sentinel respond once an attack has been detected? 

As discussed in section 3.3, as the project has progressed, it was decided to introduce a specially 
designated cyber security officer to facilitate decisions about how best to respond during a cyber-attack. 
Phase 1 has focused on identifying the need for and the role of the cyber security officer in ensuring that 
missions are completed successfully; e.g., minimizing the workload on the aircraft’s pilot, as well as the 
need for an individual with extensive knowledge of cyber-attacks. A parallel effort is being pursued to 
focus on the information that should be provided to the cyber security officer, as well as how this new 
individual should be integrated into the existing workflow for conducting ISR missions.  
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5 Appendix 

5.1 Supporting Calculations for GPS System Attack 

Proposed Mass Function for FOD (3 components) 

Event 1 and Even 8: 
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Event 3 and Event 6: 
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Event 4 and Event 5: 
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The probability of the difference of two Gaussian random variables   and   with means   ,    and 
standard deviations   ,    respectively is the Gaussian distribution with mean        and standard 

deviation √  
    

 . This automatically organizes the variability and accuracy of each sensor. This 
enables the user to implement cheaper or lighter components with differing accuracy from other 
components which may improving the scalability and diversity of use of this system. 

 

GLR ALGORITHM 

Let    , the deviation way from    , be of the form 

            

Where   is a known vector, and   is an unknown scalar change magnitude. Substituting this expression 
for    allows one to deduce the following expression of the cumulative sum,   
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These probabilities are assumed to have a Gaussian distribution. 
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In our algorithm, we have    , and       our estimate simplifies to 
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5.2 Code Examples for GPS  

 

Below is the C/C++ source code for : 

#include <stdio.h> 

#include <math.h> 

 

#define PI 3.14159265 

 

using namespace std; 

 

double deg2rad(double deg) 

{ 
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    return deg*(PI/180); 

 

} 

 

double getDistance(double lat1, double lon1, double lat2, double lon2) 

{ 

    double R = 6373; //Radius of the earth in km 

    double dLat = deg2rad(lat2-lat1); //deg2rad see below 

    double dLon = deg2rad(lon2-lon1); 

    double a = sin(dLat/2)*sin(dLat/2)+ 

        cos(deg2rad(lat1))*cos(deg2rad(lat2))* 

        sin(dLon/2)*sin(dLon/2); 

    double c = 2*atan2(sqrt(a),sqrt(1-a)); 

    double d = R*c; //Distance in km 

     

    return d; 

}  
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Project Plan and Timeline for Phase 2 Activities 

 

Table 17. Proposed schedule for Phase 2. 

  




